Titre : |
Polymer diffusion in inhomogeneous flow fields : pseudospectral calculations in the Taylor-Couette geometry |
Type de document : |
texte imprimé |
Auteurs : |
Michalis Apostolakis, Auteur ; G. Mavrantzas, Auteur |
Année de publication : |
2000 |
Article en page(s) : |
p. 181-189 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Rhéologie Solutions de polymère
|
Tags : |
Stress Diffusion Migration 'Polymer solution' 'Spectral elements' |
Index. décimale : |
532.05 Mécanique des fluides et des liquides - Dynamique (cinétique et cinématique) |
Résumé : |
Numerical results are presented addressing the phenomenon of stress-induced polymer migration in flowing polymer solutions. The calculations refer to the Taylor-Couette device, consisting of two infinitely long concentric cylinders, the inner one of which remains stationary whereas the outer one is rotated at constant angular velocity. The underlying molecular model is a two-fluid Hamiltonian model, consisting of two components, one of which is viscoelastic and obeys the Oldroyd-B constitutive equation. The spectral collocation method is used to solve the full system of govering equations. At steady-state, the calculations demonstrate that the application of a constant shear stress in the Taylor-Couette device leads to substantial migration of polymer molecules from the outer to the inner cylinder in agreement with available experimental data. Future work will adress the time scale of the migration phenomena and a linear stability analysis of this highly inhomogeneous polymer concentration profile. |
Note de contenu : |
- Problem definition
- The Taylor-Couette geometry - Flow kinematics
- Numerical method |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=25820 |
in LES CAHIERS DE RHEOLOGIE > Vol. XVII, N° 1 (10/2000) . - p. 181-189