Titre : |
Quantification of protective properties of the coating/corrosion product/steel interface by integration of transmission line model with EIS results |
Type de document : |
texte imprimé |
Auteurs : |
J. Niu, Auteur ; J. I. Barraza-Fierro, Auteur ; H. Castaneda, Auteur |
Année de publication : |
2015 |
Article en page(s) : |
p. 393-405 |
Note générale : |
Bibliogr. |
Langues : |
Américain (ame) |
Catégories : |
Acier L'acier est un alliage métallique utilisé dans les domaines de la construction métallique et de la construction mécanique.
L'acier est constitué d'au moins deux éléments, le fer, très majoritaire, et le carbone, dans des proportions comprises entre 0,02 % et 2 % en masse1.
C'est essentiellement la teneur en carbone qui confère à l'alliage les propriétés du métal qu'on appelle "acier". Il existe d’autres métaux à base de fer qui ne sont pas des aciers comme les fontes et les ferronickels par exemple. Analyse quantitative (chimie) Caractérisation Chimie des surfaces Décollement cathodique (revêtement) Métaux -- Revêtements protecteurs Revêtements protecteurs -- Détérioration Spectroscopie d'impédance électrochimique Surfaces -- Analyse
|
Index. décimale : |
667.9 Revêtements et enduits |
Résumé : |
An experimental set up was designed to characterize and quantify the protective properties of coated steel samples over time. A porous layer of corrosion products (Fe x O y ) was formed on the metal surface prior to coating application to simulate the coating disbondment condition. The detailed sample system configuration is as follows: coal tar epoxy coating/corrosion product/steel substrate. A continuous damage evolution mechanism was proposed which contains the following three stages: (I) mass transport within the coating and the corrosion porous layer, (II) mass transport and charge transfer mechanism mixture due to the formation of active sites beneath the coating layer, and (III) charge transfer dominant mechanism due to adsorption and electrochemical reaction. This damage evolution concept was supported by the experimental results in this work. Based on the electrochemical impedance spectroscopy (EIS) technique, we observed that the sample system underwent stage I when initially immersed in an electrolyte solution. By evaluating the induced disbondment conditions, transitions from stage I to stages II and III were observed during the experimental period. After 55 days of exposure, stage III was identified in the EIS spectra. A transmission line model and EIS analysis was applied to each experimental condition. The simulated impedance magnitude has a good agreement with the experimental results |
Note de contenu : |
- EXPERIMENTAL : Substrate - Corrosion product formation on the metal substrate - Experimental set up - Surface analysis - Electrochemical impedance testing
- RESULTS AND DISCUSSION : Composition and morphology analysis of the artificial oxide layer - Damage of the interface at acid conditions - Effect of the coating thickness
- TRANSMISSION LINE MODELING THEORY FOR EACH FORMED LAYER : Interface substrate/corrosion product porous layer modeling development - Quantitative analysis using TLM for the sample with 0.13 mm coating thickness - Quantitative analysis for the samples with 0.50 mm coating thicknesses |
DOI : |
10.1007/s11998-014-9627-2 |
En ligne : |
https://link.springer.com/content/pdf/10.1007%2Fs11998-014-9627-2.pdf |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=23663 |
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 12, N° 2 (03/2015) . - p. 393-405