Accueil
Détail de l'auteur
Auteur Jonathan D. Hurt
Commentaire :
McDaniel & Associates PC - Austin - Texas - USA
|
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Bio-based antimicrobial food packaging coatings / Brittney M. Mclnnis in COATINGS TECH, Vol. 15, N° 9 (09/2018)
[article]
Titre : Bio-based antimicrobial food packaging coatings Type de document : texte imprimé Auteurs : Brittney M. Mclnnis, Auteur ; Tyler W. Hodges, Auteur ; Lisa K. Kemp, Auteur ; Jonathan D. Hurt, Auteur ; Steve McDaniel, Auteur Année de publication : 2018 Article en page(s) : p. 36-43 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Additifs biosourcés
Alcool polyvinylique
Aliments -- Emballages -- Aspect sanitaire
Antimicrobiens
Biomatériaux
ChitosaneLe chitosane ou chitosan est un polyoside composé de la distribution aléatoire de D-glucosamine liée en ß-(1-4) (unité désacétylée) et de N-acétyl-D-glucosamine (unité acétylée). Il est produit par désacétylation chimique (en milieu alcalin) ou enzymatique de la chitine, le composant de l'exosquelette des arthropodes (crustacés) ou de l'endosquelette des céphalopodes (calmars...) ou encore de la paroi des champignons. Cette matière première est déminéralisée par traitement à l'acide chlorhydrique, puis déprotéinée en présence de soude ou de potasse et enfin décolorée grâce à un agent oxydant. Le degré d'acétylation (DA) est le pourcentage d'unités acétylées par rapport au nombre d'unités totales, il peut être déterminé par spectroscopie infrarouge à transformée de Fourier (IR-TF) ou par un titrage par une base forte. La frontière entre chitosane et chitine correspond à un DA de 50 % : en deçà le composé est nommé chitosane, au-delà , chitine. Le chitosane est soluble en milieu acide contrairement à la chitine qui est insoluble. Il est important de faire la distinction entre le degré d'acétylation (DA) et le degré de déacétylation (DD). L'un étant l'inverse de l'autre c'est-à -dire que du chitosane ayant un DD de 85 %, possède 15 % de groupements acétyles et 85 % de groupements amines sur ses chaînes.
Le chitosane est biodégradable et biocompatible (notamment hémocompatible). Il est également bactériostatique et fongistatique.
Le chitosane est également utilisé pour le traitement des eaux usées par filtration ainsi que dans divers domaines comme la cosmétique, la diététique et la médecine.
Emballages en matières plastiques
Evaluation
Peptides
Revêtements -- Additifs
Revêtements -- Analyse
Tests microbiologiquesIndex. décimale : 667.9 Revêtements et enduits Résumé : The antimicrobial properties of two disparate bio-based coating additives were evaluated in a polyvinyl alcohol (PVA) food packaging coating for antimicrobial activity. Chitosan, a shrimp and crustacean shell derived polysaccharide, and an antimicrobial peptide were evaluated in a dissolvable food package coating for reductions in microbial growth after contacting agar patties serving as food simulants. Where the antimicrobial components of such packaging coatings are chosen to be generally recognized as safe by worldwide regulatory agencies, migration from the packaging into headspaces and food-contact surfaces can provide enhanced efficacy against foodborne pathogens, including viruses. The techniques and coatings presented in this article suggest that dramatic improvements in food safety can be achieved using coatings containing non-toxic bio-based biocides. Note de contenu : - MATERIALS AND METHODS : Reagents and bacterial strains - Preparation of coated films - Antimicrobial coated disk treatment of E. coli contaminated agar plates - Preparation of vacuum-sealed food simulants
- EXPERIMENTS AND RESULTS : Clear disk antimicrobial assay - Moist-food simulant packaging study - Commercial packaging study at elevated concentrations and reduced coating thickness
- Table 1 : Examples of recent outbreaks of foodborne illness in the United states
- Table 2 : Colony counts and percent growth inhibition data for the high concentration PVA/chitosan/AMP7 on opalen and trayforma surfaces
- Fig. 1 : Clear disk antimicrobial assays were done to rapidly determine synergistic, additive, or antagonistic effects of the studied bio-based antimicrobial agents
- Fig. 2 : Vacuum sealed food-simulant packaging system having a bio-based antimicrobial coating. Diagram of the food-simulant packaging assembly, and a photograph of a fully assembled vacuum-sealed packaged food-simulant contamined with bacteria
- Fig. 3 : Representative bacterial colony growth results upon contact with coated disks having increasing concentrations of AMP7 and/or chitosan (each test done in triplicate). Each bacterial colony that survived under the coated disk appears as a yellow dot in that area of the plate, while nearl complete-bacterial growth covers regions outside the disk
- Fig. 4 : Dose responses of chitosan and AMP7, individually and in combination. The percent growth inhibition (as determined by reduced colony counts compared to PVA negative control) was used to calculate the dose response to coatings dosed with varying concentrations of AMP7 (A) and chitosan (B). A heatmap shows the response (as percent growth inhibition) to numerous combinations of different concentrations of AMP7 and chitosan (C). A contour map of synergy scores of the AMP7 and chitosan combinations, determined using the ZIP method, by which the positive scores (red) indicate synergy, the negative scores (green) indicate antagonism, and zero scores (white) indicate additive responses (D)
- Fig. 5 : Resutts for vacuum-sealed bags containing PVA coatings dosed with AMP7 and chitosan combinations. Table of the colonycounts and percent growth inhibition data for vacuum-sealed samples treated with combination of chitosan and AMP7 in the coatings (Al. These data were used to calculate synergy scores using the Bliss model, which are visualized in a contour plot (B)
- Fig. 6 : Antagonistic response confirmed with vacuum-sealed hag agar patty studies (each sample tested in triplicate)
- Fig. 7 : Images of the vacuum-sealed agar pathos for the plain, uncoated films (WH column) and bio-based antimicrobial containing samples with 0.2-mil thick coating (middle column) 010.6-mil thick coating (right column)En ligne : https://drive.google.com/file/d/1DV-OBIZ8Ggr0Z9ILRvMRZIkqah-iNmWZ/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=31235
in COATINGS TECH > Vol. 15, N° 9 (09/2018) . - p. 36-43[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20272 - Périodique Bibliothèque principale Documentaires Disponible Chemical resistance of bio-additives in epoxy tank coatings / Eric B. Williams in POLYMERS PAINT COLOUR JOURNAL - PPCJ, Vol. 202, N° 4574 (07/2012)
[article]
Titre : Chemical resistance of bio-additives in epoxy tank coatings Type de document : texte imprimé Auteurs : Eric B. Williams, Auteur ; Jonathan D. Hurt, Auteur ; LaMaryet Moody, Auteur ; Dwaine A. Braasch, Auteur ; James Rawlins, Auteur ; Steve McDaniel, Auteur Année de publication : 2012 Article en page(s) : p. 22-23 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Additifs biosourcés
Epoxydes
Marines (peinture)
Résistance chimique
Revêtements -- Additifs:Peinture -- Additifs
Revêtements antisalissures:Peinture antisalissuresIndex. décimale : 667.9 Revêtements et enduits Résumé : Evaluation of additive's ability to ease the cleaning of marine cargo tank coatings. Note de contenu : - Test evaluation
- Enzyme resistanceEn ligne : https://drive.google.com/file/d/1ybb_qOdaq6LMow6yLJLYddYbjFCQi7sd/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=15559
in POLYMERS PAINT COLOUR JOURNAL - PPCJ > Vol. 202, N° 4574 (07/2012) . - p. 22-23[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 14051 - Périodique Bibliothèque principale Documentaires Disponible Proteins and peptides as replacements for traditional organic preservatives : Part I / Tyler W. Hodges in COATINGS TECH, Vol. 15, N° 4 (04/2018)
[article]
Titre : Proteins and peptides as replacements for traditional organic preservatives : Part I Type de document : texte imprimé Auteurs : Tyler W. Hodges, Auteur ; Lisa K. Kemp, Auteur ; Brittney M. McInnis, Auteur ; Kyle L. Wilhelm, Auteur ; Jonathan D. Hurt, Auteur ; Steve McDaniel, Auteur ; James W. Rawlins, Auteur Année de publication : 2018 Article en page(s) : p. 44-50 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Additifs biosourcés
Antibactériens
Biomatériaux
Conservateurs (chimie) -- Suppression ou remplacement
Revêtements -- AdditifsIndex. décimale : 667.9 Revêtements et enduits Résumé : The utility of a high-throughput, spectrophotometric assay in screening over 23 enzyme and peptide-based additives against bacterial coating spoilage agents was evaluated. Candidate additives were then evaluated using ASTM D2574 for in-can coating spoilage challenges, and additives that may be used to substitute for traditional biocides were identified that eliminated recoverable bacterial growth. Note de contenu : - Reagents and bacterial strains
- Measuring cell viability using XTT
- Coating challenges
- Table 1 : Bio-based additives tested in the XTT assay
- Table 2 : Bacteria used for XTT and in-can coating challenges - 3. Coating used for in-can ASTM D2574 bacterial challenges
- Fig. 1. Effects of various bio-based additives, alone and in combination, on the growth of a mixture in equal of A. faecalis, B. cereus, E. aerogenes, p. aeruginosa, p. fluorescens, and P. putida
- Fig. 2. Effects of various bio-based additives, alone and in combination with traditional chemical-based biocides, on the growth of a mixture in equal parts of A. faecalis, B. cereus, E. aerogenes, p. aeruginosa, p. fluorescens, and P. putida
- Fig. 3. Comparison of colony types present on plates from paint samples that scored 4 on day 7. Comparison of day 7 plates from the control acrylic latex samples (A) and acrylic latex + 0.05 mg/mL glucose oxidase + 2 mg/mL dextrose (B) shows that the paint with bio-based additive, though scorling 4 according to the ASTM guidelines, had at least one fewer colony type compared to the controlEn ligne : https://drive.google.com/file/d/1mlAEDD3RQVXuCMLrcz-E9cTDcX6cDyoO/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=30519
in COATINGS TECH > Vol. 15, N° 4 (04/2018) . - p. 44-50[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 19857 - Périodique Bibliothèque principale Documentaires Disponible Self-decontamination coatings become a reality / Jonathan D. Hurt in POLYMERS PAINT COLOUR JOURNAL - PPCJ, Vol. 203, N° 4587 (08/2013)
[article]
Titre : Self-decontamination coatings become a reality Type de document : texte imprimé Auteurs : Jonathan D. Hurt, Auteur ; Eric Williams, Auteur Année de publication : 2013 Article en page(s) : p. 16-17 Langues : Anglais (eng) Catégories : Décontamination chimique
EnzymesUne enzyme est une protéine dotée de propriétés catalytiques. Pratiquement toutes les biomolécules capables de catalyser des réactions chimiques dans les cellules sont des enzymes ; certaines biomolécules catalytiques sont cependant constituées d'ARN et sont donc distinctes des enzymes : ce sont les ribozymes.
Une enzyme agit en abaissant l'énergie d'activation d'une réaction chimique, ce qui accroît la vitesse de réaction. L'enzyme n'est pas modifiée au cours de la réaction. Les molécules initiales sont les substrats de l'enzyme, et les molécules formées à partir de ces substrats sont les produits de la réaction. Presque tous les processus métaboliques de la cellule ont besoin d'enzymes pour se dérouler à une vitesse suffisante pour maintenir la vie. Les enzymes catalysent plus de 5 000 réactions chimiques différentes2. L'ensemble des enzymes d'une cellule détermine les voies métaboliques qui peuvent avoir lieu dans cette cellule. L'étude des enzymes est appelée enzymologie.
Les enzymes permettent à des réactions de se produire des millions de fois plus vite qu'en leur absence. Un exemple extrême est l'orotidine-5'-phosphate décarboxylase, qui catalyse en quelques millisecondes une réaction qui prendrait, en son absence, plusieurs millions d'années3,4. Comme tous les catalyseurs, les enzymes ne sont pas modifiées au cours des réactions qu'elles catalysent, et ne modifient pas l'équilibre chimique entre substrats et produits. Les enzymes diffèrent en revanche de la plupart des autres types de catalyseurs par leur très grande spécificité. Cette spécificité découle de leur structure tridimensionnelle. De plus, l'activité d'une enzyme est modulée par diverses autres molécules : un inhibiteur enzymatique est une molécule qui ralentit l'activité d'une enzyme, tandis qu'un activateur de cette enzyme l'accélère ; de nombreux médicaments et poisons sont des inhibiteurs enzymatiques. Par ailleurs, l'activité d'une enzyme décroît rapidement en dehors de sa température et de son pH optimums.
Revêtements -- Additifs:Peinture -- Additifs
Revêtements hygiéniquesIndex. décimale : 667.9 Revêtements et enduits Résumé : Development of a coating containing enzymatic additives, which have decontamination abilities against chemical warfare agents. En ligne : https://drive.google.com/file/d/1nJC4ksO5ziZs5FwLd2vdiAWV1AfENIqS/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=19247
in POLYMERS PAINT COLOUR JOURNAL - PPCJ > Vol. 203, N° 4587 (08/2013) . - p. 16-17[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 15400 - Périodique Bibliothèque principale Documentaires Disponible Self-sterilizing/DNA-free coatings in space and on earth / Steve McDaniel in COATINGS WORLD, Vol. 23, N° 4 (04/2018)
[article]
Titre : Self-sterilizing/DNA-free coatings in space and on earth Type de document : texte imprimé Auteurs : Steve McDaniel, Auteur ; Jonathan D. Hurt, Auteur Année de publication : 2018 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Additifs biosourcés
Antimicrobiens
Industries aérospatiales -- Matériaux
Revêtement auto-stérilisant:Peinture auto-stérilisanteIndex. décimale : 667.9 Revêtements et enduits Résumé : What if, because of paint, man could finally answer the age-old question : Are We Alone ?
It is often said amongst materials scientists that the very last thing considered by equipment design engineers is the materials from which the equipment will be constructed. While that’s a wee bit of an exaggeration, rarely are materials the first thing considered in design of space probes, including sophisticated equipment whose mission is directed to searching for microbial life forms on solar system bodies other than Earth. That approach is about to change. The changes to coatings necessitated by the extreme requirements of life-seeking space missions are some of the same changes generally needed for many planet Earth coatings applications.Note de contenu : - Combinations of bio-additives for synergistic self-sterilizing effects
- Reduction of terrestrial contamination via nuclease coatings
- The possible origin(s) and locations of life in our star system
- Planetary life-detection probe design
- Additional uses for self-sterilizing coatings on earth
- Fig. 1 : Minwax paint films having DNase I degrade DNA
- Fig. 2 : Mechanisms for spreading life throughout the solar system
- Fig. 3 : Sub-surface ocean thought to exist under Europa’s surface
- Fig. 4 : Penetrator probe after impact with Mars collecting sub-surface sampleEn ligne : https://www.coatingsworld.com/issues/2018-04-01/view_features/self-sterilizingdn [...] Format de la ressource électronique : Html Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32527
in COATINGS WORLD > Vol. 23, N° 4 (04/2018)[article]Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire