[article]
Titre : |
Anti-reflective smart coatings on glasses |
Type de document : |
texte imprimé |
Auteurs : |
Praful Sanjay Dahatonde, Auteur |
Année de publication : |
2013 |
Article en page(s) : |
p. 62-66 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Matériaux intelligents Polymérisation sous plasma Revêtement antireflet:Peinture antireflet Verre
|
Index. décimale : |
667.9 Revêtements et enduits |
Résumé : |
Our eyes are very complex organs. In order for our eyes to see, there must be light. Light rays reflect off of an object and enter the eye through the cornea. At the back of the eye the light is focused by the retina, and then it is converted into electric signais to be sent to the brain. Once the brain receives the signais, vision occurs. If the eye cannot properly focus an image it is said to have a refractive error. An eye doctor can determine the type of refractive error by a test cal led refraction. Correcting a refractive error is achieved by glasses, contacts or refractive surgery. A type of optical coating applied to the surface of lenses and other optical devices to reduce reflection. Anti-reflective coating (AR coating) is made of several layers of film metal oxides that are layered on the surface of the lens. Each layer is chemically engineered to block reflected light. This causes the intensity of the light reflected from the inner surface and the light reflected from the outer surface of the film to be nearly equal, canceling each other out and el iminating glare. Antireflection coatings are used to reduce reflection from surfaces. Whenever a ray of light moues from one medium to another (such as when light enters a sheet of glass alter travelling through air), some portion of the light is reflected from the surface (known as the interface) between the two media. AR was first developed to enhance and improve the view on high powered telescopes, microscopes and camera lenses. AR coating is composed of multiple layers of metal oxides applied to the front and sometimes the back surface of the lens. This layeringeffect reduces reflected light and aliows more I ight to betransmitted through the lens.
What does this do for eyeglasses? First, it improves the appearance of your eyes to the outside world. AR coating makes the lenses appear almost invisible. It also vastly improves the cosmetic appearance of wearing the lenses by reducing internai reflections in the lens, making your lenses appear much thinner.
Secondly, it improves the quality of your vision by reducing reflected lights. This cuts down on glare and halos around lights, and improves the quality of your vision at night and when us ing the computer in certain work environments.
While AR coating is beneficial to everyone, it is found almost universally on high index lenses. High index lenses are made out of a type of plastic that can make your lenses much thinner than regular plastic lenses. However, to achieve th is thinness, sometimes the lens material can cause unwanted reflections. As a result, manufacturers who produce very high index lenses make AR a part of the complete lens price and do not separate the lens from the AR coating because they bel ieve a very high index lens should never be worn without an AR coating. |
Note de contenu : |
- EXPERIMENTAL : PLASMA POLYMERIZATION DEPOSITION SYSTEM
- THEORY OF AR COATINGS
- TYPES OF AR COATINGS : A) Index-matching - B) Single-layer interférence - C) Multi-layer interference - D) Absorbing
- WHY CHOOSE AN ANTI-REFLECTION COATING ?
- HOW DOES AN ANTI-REFLECTION COATING WORK ? : Tinted - Polarized - Photochromic - Mirrored |
En ligne : |
https://drive.google.com/file/d/1C0S7vtYpnVDIXciVtNXd6eamJ-uaBkTm/view?usp=drive [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=18975 |
in PAINTINDIA > Vol. LXIII, N° 6 (06/2013) . - p. 62-66
[article]
|