Accueil
Catégories
> Polymérisation
PolymérisationVoir aussi
|
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
ACOMP monitors 2-ethylhexyl acrylate and its comonomer-based reactions in POLYMERS PAINT COLOUR JOURNAL - PPCJ, Vol. 208, N° 4647 (12/2018)
[article]
Titre : ACOMP monitors 2-ethylhexyl acrylate and its comonomer-based reactions Type de document : texte imprimé Année de publication : 2018 Article en page(s) : p. 32-35 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : 2-Ethylhexyl acrylate
Adhésifs sensibles à la pression
Chromatographie sur gel
Copolymères -- Synthèse
Homopolymères
Polymérisation
RhéologieIndex. décimale : 668.3 Adhésifs et produits semblables Résumé : The author discusses the rol of its ACOMP online monitoring system in monitoring the polymerisation of two pressure sensitive adhesives. Note de contenu : - Understanding the optical properties of monomers and polymers
- ACOMP configured to monitor the synthesis of poly2EHA and poly2EHA-AA
- Reaction methodology
- Acomp yields real-time results on the polymerisation of 2-ethylhexyl acrylate
- GPC characterisation
- Fig. 1 : ACM RI data for 2EHA monomer and poly2EHA
- Fig. 2 : UV spectra of 2EHA, acrylic acid and poly2EHA
- Fig. 3 : Raw UV, viscosity and SLS signals of homopolymer 2EHA batch polymerisation
- Fig. 4 : Raw UV, viscosity, and SLS data from copolymer 2EHA and AA batch polymerisation
- Fig. 5 : Polymer concentration at UV detector
- Fig. 6-7 : Intrinsic viscosity vs polymer concentration
- Fig. 8 : GPC analysis
- Fig. 9 : GPC analysis continued
- Table 1 : Reaction conditions for each polymerisation
- Table 2 : ACOMP monitored results of intrinsic viscosity and molecular weight
- Table 3 : GPC analysis resultsEn ligne : https://drive.google.com/file/d/1svtIgwRLdKQRHXbkcAUCg0zwTs8EPy6S/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=31517
in POLYMERS PAINT COLOUR JOURNAL - PPCJ > Vol. 208, N° 4647 (12/2018) . - p. 32-35[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20463 - Périodique Bibliothèque principale Documentaires Disponible Adhesion promotion on inorganic and organic substrates / Jon-Paul Griffiths in ADHESIVES & SEALANTS INDUSTRY (ASI), Vol. 17, N° 1 (01/2010)
[article]
Titre : Adhesion promotion on inorganic and organic substrates Type de document : texte imprimé Auteurs : Jon-Paul Griffiths, Auteur Année de publication : 2010 Article en page(s) : p. 22-23 Langues : Américain (ame) Catégories : Cyanoacrylates
Essais dynamiques
Métaux -- Surfaces
Pelage
Polymères -- Surfaces
Polymérisation
Polypropylène
Promoteurs d'adhésion
Silanes
Surfaces (technologie)Index. décimale : 668.3 Adhésifs et produits semblables Résumé : An adhesion promoter is a bi-functional compound that can chemically react with both the substrate and the adhesive. Known for increasing an adhesive’s bond strength, it can be applied in two ways: by being mixed with the adhesive or applied directly to the substrate. Unlike priming systems, adhesion promoters are generally applied at thinner film thicknesses. An adhesion promoter’s effectiveness depends on both the substrate and the adhesive being used. Surface pretreatments, such as solvent cleaning or mechanical etching, can be used with adhesion promoters as part of a pretreatment method. Note de contenu : - Adhesion promoteurs for metal high-surface-energy inorganic substrates
- Adhesion promoters for organic and low-surface-energy inorganic substrates
- FIGURES : 1. Silane hydrolyse and polymerization - 2. Effectiveness of silanes on different substrates - 3. Overview of the reactivity of onto adhesion promoters - 4.Example of onto adhesion promoter modifying a polypropylene substrates - 5. T-peel testing with Loctite 4105 cyanoacrylate resin with onto adhesive promoters - 6. Lap shear testing Optitec 5054 epoxy resin with onto adhesive promotersEn ligne : http://www.adhesivesmag.com/articles/88737-adhesion-promotion-on-inorganic-and-o [...] Format de la ressource électronique : Web Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=25887
in ADHESIVES & SEALANTS INDUSTRY (ASI) > Vol. 17, N° 1 (01/2010) . - p. 22-23[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 011873 - Périodique Bibliothèque principale Documentaires Disponible Air convective drying and curing of polyurethane-based paints on sheet molding compound surfaces / S. Vessot in JOURNAL OF COATINGS TECHNOLOGY (JCT), Vol. 70, N° 882 (07/1998)
[article]
Titre : Air convective drying and curing of polyurethane-based paints on sheet molding compound surfaces Type de document : texte imprimé Auteurs : S. Vessot, Auteur ; J. Andrieu, Auteur ; Jocelyne Galy, Auteur ; J. F. Gérard, Auteur ; P. Laurent, Auteur Année de publication : 1998 Article en page(s) : p. 67-76 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Cinétique chimique
Matériaux -- Imprégnation
Polymérisation
Polyuréthanes
Réticulation (polymérisation)
Revêtements
Revêtements bi-composantIndex. décimale : 667.9 Revêtements et enduits Résumé : In this study the kinetics and phase changes which occurred during the convective drying of a model car paint based on the polyurethane chemistry is described. The competition between the kinetics of the solvent removal and the phase changes, such as the gelation and/or the vitrification of the polyurethane, needs to be taken into account to avoid the defects in the resulting dried coating. The kinetics of polycondensation of a two-component polyurethane based on polyester triol and triisocyanate in a mixture of various solvents was studied as a 100 μm thick layer on sheet molding compound (SMC) and zinc plated steel plates. Differential scanning calorimetry (DSC) and Fourier-Transform infrared spectrometry (FTIR) and thermogravimetric analysis (TGA) during isothermal curings allowed us to determine the rate constants and the activation energies by using second and third order autocatalytic models. Note de contenu : - EXPERIMENTAL : Reagents and substrates
- RESULTS AND DISCUSSION : Effect of temperature - Effect of the stoichiometric ratio - Effect of the substrate naturePermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=18018
in JOURNAL OF COATINGS TECHNOLOGY (JCT) > Vol. 70, N° 882 (07/1998) . - p. 67-76[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 003551 - Périodique Bibliothèque principale Documentaires Disponible An overview of the science and art of encapsulated pigments : Preparation, performance and application / Benjamin Tawiah in COLORATION TECHNOLOGY, Vol. 138, N° 3 (06/2022)
[article]
Titre : An overview of the science and art of encapsulated pigments : Preparation, performance and application Type de document : texte imprimé Auteurs : Benjamin Tawiah, Auteur ; Benjamin K. Asinyo, Auteur ; Charles Frimpong, Auteur ; Ebenezer K. Howard, Auteur ; Raphael K. Seidu, Auteur Année de publication : 2022 Article en page(s) : p. 224-247 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Complexation (chimie)
Couches minces multicouches
Dispersions et suspensions
Encapsulation
Essais (technologie)
Evaluation
Pigments
Polymérisation
Séparation de phases
Sol-gel, ProcédéIndex. décimale : 667.2 Colorants et pigments Résumé : A successfully encapsulated pigment requires dispersants, pigment and a dispersion medium to build a thin layer of polymer over individual pigment particles. The stability of encapsulated dispersion is aided by the absorption of stabilising molecules on the surface. The stabilising molecules function by steric hindrance or Coulomb-repulsion forces, which prevent the encapsulated pigments from advancing too close to each other for attractive forces to cause agglomeration. Unlike flocculation, agglomeration results in a cementitious network structure that is not easily redispersed by shear forces, hence the need for effective dispersion of encapsulated pigment intended for engineering applications. Besides dispersion forces, the quality of pigment dispersion, the pigment particle size, pigment density, viscosity of the dispersion, and the method of producing the pigment microcapsules, also affect the efficiency and the quality of encapsulated pigment dispersions. This article, therefore, provides up-to-date information on the various pigment encapsulation methods (with specific emphasis on phase separation, in situ polymerisation, emulsion and mini-emulsion polymerisation, the sol-gel method, inclusion complexation and layer-by-layer assembly), and also reviews the performance, the evaluation/test methods and applications of encapsulated pigments. This review provides important insight into the science and art of encapsulated pigment preparation for pigment dispersion technologists, researchers and consumers of pigment products in different fields of endeavour. Note de contenu : - METHODS OF ENCAPSULATION : Preparation of encapsulated pigment dispersion - Physico-chemical methods - Chemical methods
- INCLUSION COMPLEXATION
- PERFORMANCE OF ENCAPSULATED PIGMENT DISPERSIONS : Stability - Rheological behavior
- COLOUR PERFORMANCE OF ENCAPSULATED PIGMENT DISPERSION
- EVALUATION METHODS FOR ENCAPSULATED PIGMENT DISPERSION
- APPLICATIONS OF ENCAPSULATED PIGMENT DISPERSION : Emerging applications of encapsulated pigments
- Table 1 : Encapsulation methods suitable for different ranges of capsule size
- Table 2 : Selected studies in in situ polymerisation
- Table 3 : Advantages and limitations of some conventional encapsulation methods applicable different types of pigments
- Table 4 : Test methods for evaluating encapsulated pigment dispersion
- Table 5 : Application of encapsulated pigmentsDOI : https://doi.org/10.1111/cote.12597 En ligne : https://onlinelibrary.wiley.com/doi/epdf/10.1111/cote.12597 Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=37853
in COLORATION TECHNOLOGY > Vol. 138, N° 3 (06/2022) . - p. 224-247[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23519 - Périodique Bibliothèque principale Documentaires Disponible
[article]
Titre : Anticorrosive self healing coatings Type de document : texte imprimé Auteurs : Ajay Chaurasiya, Auteur Année de publication : 2020 Article en page(s) : p. 56-82 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Anticorrosifs
Anticorrosion
Catalyseurs
Emulsification
Métathèse (chimie)
Métaux -- Revêtements protecteurs
Microcapsules
Monomères
Nanocapsules
Passivité (Chimie)
Polymérisation
Revêtement autoréparant
Revêtements organiquesIndex. décimale : 667.9 Revêtements et enduits Résumé : Autonomic healing materials respond without external intervention to environmental stimuli in a nonlinear and productive fashion, and have great potential for advanced engineering systems. Self-healing coatings, which autonomically repair and prevent corrosion of the underlying substrate, are of particular interest. Notably, the worldwide cost of corrosion has been year estimated to be nearly $300 billion per year. Recent studies on self-healing polymers have demonstrated repair of bulk mechanical damage as welI as dramatic increases in the fatigue life. Non-metallic (based on polymers or oxides) and metallic protective coatings are used to protect metal products against the harmful action of the corrosion environment Various approaches for achieving healing functionality encapsulation have been demonstrated, including reversible chemistry, networks, microvascular nanoparticle phase separation, poly-ionomers, fibres hollow and separation. monomer phase. The majority of these systems, however, have serious chemical and mechanical limitations, preventing their use as coatings. Modem engineered coatings are highly optimized materials in which dramatic modifications of the coating chemistry are unlikely to be acceptable. Here, we describe a generalized approach to self-healing polymer-coating systems, and demonstrate its effectiveness for both model and industrial ly important coating systems. Note de contenu : - Definition of self-healing
- Design strategies
- Release of healing agents
- Microcapsule embedment
- Hollow fiber embedment
- Microvascular system
- Reversible cross-links
- Diels-Alder (DA) and retro-DA reaction
- Ionomers
- Supramolecular polymers : Miscellaneous technologies - electrohydrodynamics
- CONDUCTIVITY : Shape memory effect
- Nanoparticle migrations
- Co-deposition
- Self-healing corrosion protection coatings polymeric coatings
- Protection of mild steel
- Protection of aluminium alloy
- Protection of magnesium alloy
- Coatings containing micro-nanocapsules
- Hybrid-oxide coatings
- Other self-healing coatings
- Self-healing process
- experimental analysis for cross cut corrosion resistance test
- Others applications
- Fig. 1 : Schematic representation of self-healing concept using embedded microcapsules
- Fig. 2 : Light microscopic picture of encapsulated DCPD and Grubb's catalyst
- Fig. 3 : Ring opening metathesis polymerization of DCPD
- Fig. 4 : Optical micrographs of hollow glass fibers
- Fig. 5 : Schematic representation of sel-healing concept using hollow fibers
- Fig. 6 : Schematic showing self-healing materials with 3D microvascular networks
- Fig. 7 : Schematic showing formation of highly cross-Iinked polymer (3M4F) using a multi-diene (four furan moieties, 4F) and multi-dienophile (three maleimide moieties, 3M) via DA reactions
- Fig. 8 : Chemical structure of functionalized maleimide and furan monomers
- Fig. 9 : Thermally reversible cross-linking reaction between TMI and TF through DA and retro-DA reactions
- Fig. 11 : Preparation of thermally reversible polyamides
- Fig. 12 : Schematic showing reversible ionic interactions
- Fig. 13 : Examples of supramolecular polymers from the literature : main-chain supramolecular polymers and side-chain supramolecular polyemrs
- Fig. 17 : Polymeric bis-terpyridine-metal complex (charge and anions omitted)
- Fig. 18 : Schematic showing electrohydrodynamic aggregation of particles
- Fig. 19 : Schematic showing conductive self-healing materials
- Fig. 20 : Representative three-dimensionsl profiles of a spherical indent at load of 15 N fresh indent and after healing above the austenite finish temperature
- Fig. 21 : Schematics showing electrolytic co-deposition of microcapsules (or mesoporous nanoparticles containing corrosion inhibitors) with metal ions
- Fig. 22 : Schematic illustration of a crack in the epoxy coating
- Fig. 23 : Schematic representation of the self-healing effect of the TiO, particle polymer composite coating
- Fig. 24 : Schematic Illustration of self healing zipper-like mechanism
- Fig. 25 : Schematic Self-healing mechanism of polyelectrolyte multilayers
- Fig. 25 : Schematic shows how a capsule is created
- Fig. 26 : Schematic shows structure of silane film
- Fig. 27 : Epoxy with control, epoxy with corrosion inhibitor and epoxy with self healing additives
- Fig. 28 : Schematic showing the reflow effect of self-haling clear coatsEn ligne : https://drive.google.com/file/d/1Z-i4m7ZBZI117NIGydOCioBCW5SAUQyz/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=34661
in PAINTINDIA > Vol. LXX, N° 9 (09/2020) . - p. 56-82[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22359 - Périodique Bibliothèque principale Documentaires Disponible Assemblage électro-affin d'un immunocapteur à détection photoélectrochimique / Naoufel Haddour in L'ACTUALITE CHIMIQUE, N° 283 (02/2005)
PermalinkPermalinkDu bon usage du degré de polymérisation en nombre / Thierry Hamaide in L'ACTUALITE CHIMIQUE, N° 422-423 (10-11/2017)
PermalinkBottle grade virgin PET production technology in CHEMICAL FIBERS INTERNATIONAL, Vol. 66, N° 2 (06/2016)
PermalinkCaoutchoucs et textiles synthétiques / Jean Vène / 1967
PermalinkCarbon fiber PAN precursor production - new approach / Franco Francalanci in CHEMICAL FIBERS INTERNATIONAL, Vol. 68, N° 1 (03/2018)
PermalinkCarbon fiber PAN precursor production - new approach / Franco Francalanci in CHEMICAL FIBERS INTERNATIONAL, (10/2018)
PermalinkPermalinkLa catalyse de polymérisation : repousser les limites / Vincent Monteil in L'ACTUALITE CHIMIQUE, N° 369 (12/2012)
PermalinkPermalinkChallenges for a greener aircraft / Rocio Ruiz Gallardo in JEC COMPOSITES MAGAZINE, N° 124 (10/2018)
PermalinkChimie macromoléculaires et matériaux polymères / Henri Cramail in L'ACTUALITE CHIMIQUE, N° 353-354 (06-07-08/2011)
PermalinkChimie moléculaire et nanoscience / Robert Corriu in L'ACTUALITE CHIMIQUE, N° 290-291 (10-11/2005)
PermalinkLa chimie organométallique de surface / Frédéric Lefebvre in L'ACTUALITE CHIMIQUE, N° 5-6 (05-06/2002)
PermalinkChimie des polymères / Jean-pierre Mercier / Lausanne [Suisse] : Presses polytechniques et universitaires Romandes (1993)
Permalink