Accueil
Catégories
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
Applied rheology and architectural coating performance / Richard R. Eley in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 16, N° 2 (03/2019)
[article]
Titre : Applied rheology and architectural coating performance Type de document : texte imprimé Auteurs : Richard R. Eley, Auteur Année de publication : 2019 Article en page(s) : p. 263-305 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Cisaillement (mécanique)
Floculation
Latex
Microstructures
Particules (matières)
Revêtements en bâtiment:Peinture en bâtiment
Rhéologie
SédimentationIndex. décimale : 667.9 Revêtements et enduits Résumé : Paint rheology is understood to play a vital role in both product performance and customer acceptance. Consequently, the ability to formulate paints having the necessary flow properties is essential for paint technologists. Experienced formulators have said that as much as half the cost of new product development can be consumed in getting the rheology right. In fact, the quality-control viscosity measurement devices in everyday use in the development laboratory are of little help in this endeavor. Among other shortcomings, most such instruments apply shear stresses which are far from those involved in important coating flow processes. The rheological properties required for a successful coating must be defined with due regard to the prevailing conditions of stress involved in application and film formation. This requires that measurements should be taken over a wide range of shear stress and timescales. The task for the applied rheologist is to bridge rheology and technology, but it is often unclear how to connect rheological data with the “real-world” performance of paints, due to the complexity of coating flows. This review in part discusses the use of controlled-stress rheometry to characterize coatings, and presents ways of applying the results effectively to the analysis of paint flow. The methodology is fundamental but not unduly time-consuming, since the objective is to provide sound yet timely guidance to formulators. Thirteen commercial semigloss latex paints were analyzed rheologically to develop correlations to paint performance. Using the method of shear stress mapping, key regions of the non-equilibrium flow curve are identified for the control of paint flow processes. With this approach, simple but strong correlations were obtained of paint flow metrics to viscosity chosen at the relevant stresses. The fact of high correlation means one can expect that an appropriate viscosity adjustment will correspondingly improve performance. It is argued that shear stress, not shear rate, is the correct independent variable both for experimentation and for the graphical presentation and analysis of viscosity data. The yield stress parameter, particle flocculation, and sedimentation are also discussed, and an oscillatory shear method of direct measurement of yield stress is described. Note de contenu : - BASIC RHEOLOGY TERMS AND DEFINITIONS
- RHEOLOGY AND COATING FLOWS : Correlations of rheology to performance - Shear rate or shear stress ? - Shear rate or shear stress : experimental aspects - Equilibrium flow methods - Step-shear thixotropic recovery method - The non-equilibrium flow curve - Graphical representation of flow curves - Shear stress mapping - Leveling - Sagging (drainage flow) - Rheology and initial film geometry - Hydrodynamics of brush and roller application -
- YIELD STRESS : Yield stress measurement - Yield stress and coating flows - Yield stress and particle settlingDOI : 10.1007/s11998-019-00187-5 En ligne : https://link.springer.com/content/pdf/10.1007%2Fs11998-019-00187-5.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32405
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 16, N° 2 (03/2019) . - p. 263-305[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20894 - Périodique Bibliothèque principale Documentaires Disponible Characterisation of coatings and coating materials by analytical centrifugation / U. Rietz in POLYMERS PAINT COLOUR JOURNAL - PPCJ, Vol. 209, N° 4650 (04/2019)
[article]
Titre : Characterisation of coatings and coating materials by analytical centrifugation Type de document : texte imprimé Auteurs : U. Rietz, Auteur ; T. Sobisch, Auteur ; D. Lerche, Auteur ; Arnold Uhl Lerche, Auteur Année de publication : 2019 Article en page(s) : p. 40-43 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Adhésion
Anticorrosifs
Anticorrosion
Caractérisation
Centrifugation
Epoxydes
Métaux -- Revêtements protecteurs
Revêtements -- Analyse
Revêtements organiques
SédimentationIndex. décimale : 667.9 Revêtements et enduits Résumé : Most finished products have coated surfaces for varions reasons. Building constructions have to withstand manifold external influences, eg temperature and humidity, UV radiation or erosion caused by rain. Cutting tools like drills are exposed to high mechanical stress. To extend the work life, their surfaces are often modified with protective coatings. Coating systems for car bodies have to protect metal substrates from corrosion but also provide an appealing appearance. As the mentioned examples show, most coatings have to fulfil a combination of different requirements.
The paper introduces CAT-Technology, (Centrifugal Adhesion Testing), which allows for testing eight samples under identical conditions. Among other application examples, the curing behaviour of corrosion protection paints will be highlighted. As a complimentary tool to CAT-Technology analytical centrifugation based on STEP Technology® is suggested for coating laboratories. This proved to be a powerful instrument for characterisation of base materials and finished products. Other aspects to be considered are coating materials properties from composition/formulation over production until application to final product surfaces.Note de contenu : - Measurement principle-cat-technology
- Preparation of test specimens
- Experimental
- Anti-skid coatings
- Epoxy paints for corrosion protection
- Step technology
- Fig. 1 : Measurement principle of CAT-technology
- Fig. 2 : Joining a test specimen
- Fig. 3 : RPM and temperature progression during a measurement
- Fig. 4 : Strength obtined for anti-skid coatings
- Fig. 5 : Failure pattern - cohesive failure within coating
- Fig. 6 : Failure pattern
- Fig. 7 : Strength development and comparison
- Fig. 8 : NIR-transmission profiles for pigment dispersed by laboratory stirrer (upper two) and pigment disperses in a ball mill (lower two), RCA 30, 20°C. Region of interest 7 mm below cell filling height at 106 mm shown. First profile after 10s red, last profile after 40min green
- Fig. 9 : Sedimentation velocities of the samples, mean RC1 30, 20°
- Table 1 : Masses of components
- Table 2 : Paint preparation details
- Table 3 : Strength paint A
- Table 4 : Strength paint BEn ligne : https://drive.google.com/file/d/1WvW88zrwHain2i1ROoxjIb3-CdShBaf4/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32603
in POLYMERS PAINT COLOUR JOURNAL - PPCJ > Vol. 209, N° 4650 (04/2019) . - p. 40-43[article]Réservation
Réserver ce document
Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 20959 - Périodique Bibliothèque principale Documentaires Disponible 21052 - Périodique Bibliothèque principale Documentaires Disponible
[article]
Titre : Dispersion principles you should know Type de document : texte imprimé Auteurs : M. Veeramani, Auteur Année de publication : 2023 Article en page(s) : p. 106-108 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Agents dispersants (chimie)
Polyuréthanes
Revêtements en phase aqueuse -- Additifs:Peinture en phase aqueuse -- Additifs
SédimentationIndex. décimale : 667.6 Peintures Résumé : It takes great pleasure to inform the readers that this is my 103rd chapter. I am trying to touch upon many topics under the Water Based Paints, in addition I am dealing with some fringe topics that has relevant to the core subject. I will try to cover as much as possible to give enough information to the readers especially from the Small-Scale Sector. Note de contenu : - Polymeric dispersants : Polyurethanes
- Select the right dispersing agent for your formulation
- Role of dispersants in preventing sediementation
- Fig. 1 : Sedimentaiton of a solid particle in a liquid
- Fig. 2 : Reversible physical network preventing sedimentationEn ligne : https://drive.google.com/file/d/1HMgUMtsv7WGgBpEymF8aeh09HE2V4rVq/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=40134
in PAINTINDIA > Vol. LXXIII, N° 8 (08/2023) . - p. 106-108[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 24179 - Périodique Bibliothèque principale Documentaires Disponible Formulating W/O emulsions : Features and solutions / Gattefossé in SOFW JOURNAL, Vol. 146, N° 9 (09/2020)
[article]
Titre : Formulating W/O emulsions : Features and solutions Type de document : texte imprimé Auteurs : Gattefossé, Auteur Année de publication : 2020 Article en page(s) : p. 44-45 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Coalescence (Sciences physiques)
Cosmétiques
Electrolytes
Emulsions -- Emploi en cosmétologie
Formulation (Génie chimique)
Peau -- Soins et hygiène
Produits antisolaires
SédimentationIndex. décimale : 668.5 Parfums et cosmétiques Résumé : W/O (water-in-oil) emulsions are becoming more and more preferred in the personal care space, particularly regarding color cosmetics and sun care.
In color cosmetics, W/O foundations offer better water resistance, long-wear, and high coverage – all the performance qualities a consumer desires – compared to O/W (oil-in-water) formulations. And though W/Si (water-in-silicone) formulations may offer great performance and texture, they do not qualify as natural makeup, making them a less desirable option among younger shoppers.
When it comes to sun care, consumers are moving towards mineral options. For example, sunscreen launches containing zinc oxide increased by 45% from 2014-15 to 2018-19 in North America. Zinc oxide is easier to formulate in a W/O than an O/W system. In fact, most inorganic sunscreens are either anhydrous or W/O formulations.
However, formulating can be easier said than done, as there are many challenges that come with making a stable W/O product. W/O systems are more sensitive to other ingredients and require more energy in their processing to ensure stability. There are two key factors to consider when it comes to W/O formulation : oil polarity and electrolyte addition, which may not have any influence or not even be necessary for O/W formulations.Note de contenu : - W/O emulsions meet market trends
- Oil polarity
- Electrolytes addition
- Emulium® illustro, the solution for natural and stable W/O emulsions
- Fig. 1 : Representation of the Ostwald ripening
- Fig. 2 : Representation of coalescence and sedimentation
- Fig. 3 : Main chemical structure of Emulium® IllustroEn ligne : https://drive.google.com/file/d/1L_ZFxhC_Ml_BC_CvvrGY_PatV_VpbrfG/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=34629
in SOFW JOURNAL > Vol. 146, N° 9 (09/2020) . - p. 44-45[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 21951 - Périodique Bibliothèque principale Documentaires Disponible Particle size distribution, measurement, and assessment : principles, features, limitations, and benefits / Theodore Provder in COATINGS TECH, Vol. 17, N° 10 (10/2020)
[article]
Titre : Particle size distribution, measurement, and assessment : principles, features, limitations, and benefits Type de document : texte imprimé Auteurs : Theodore Provder, Auteur Année de publication : 2020 Article en page(s) : p. 28-37 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Caractérisation
Chimie analytique
Chromatographie
Evaluation
Granulométrie
Mesure
Sédimentation
Séparation (technologie)
Taille des particulesIndex. décimale : 667.9 Revêtements et enduits Résumé : The field of particle size distribution (PSD) characterization and measurement has experienced a renaissance over the past 40 years. These changes have been driven by advances in electronics, computer technology, and sensor technology in conjunction with the market pull for PSD methods embodied in cost-effective, user-friendly instrumentation. These changes can be characterized by at least four activities: (1) End user innovation exemplified by techniques such as hydrodynamic chromatography (HDC), capillary hydrodynamic fractionation (CHDF), and field flow fractionation methods (sedimentation, flow, and thermal fields, respectively SdFFF, FIFFF, and ThFFF); (2) Revitalization of older instrumental methods such as gravitational and centrifugal sedimentation; (3) Evolution of research-grade instrumentation into low-cost, routine, user-friendly instrumentation exemplified by dynamic light scattering (DLS); and (4) The attempt to meet extremely difficult technical challenges such as: (a) providing a single hybrid instrument with high resolution over a very broad dynamic range (4+ decades in size; e.g., Fraunhofer/Mie; photozone sensing/DLS); (b) PSD measurement of concentrated dispersions (acoustophoretic, dielectric measurements, fiber optic DLS (FOQELS); (c) in-situ process particle size sensors (in-line or at-line, e.g., FOQELS); (d) routine measurement of particle shape and structure (e.g., image analysis). Instrumental methods resulting from these activities are discussed in terms of measurement principles and the strengths and weaknesses of these methods for characterizing PSDs. Business and societal driving forces will impact customer perceived instrumentation and knowledge needs for the future and the ability to meet the specific difficult technical challenges in particle size distribution characterization mentioned above. Anticipated progress toward meeting these technical challenges in particle size distribution characterization mentioned above is discussed. Note de contenu : - END USER INNOVATION - COMMERCIAL DEVELOPMENT : Hydrodynamic Chromatography (HDC) - Capillary Hydrodynamic Fractionation (CHDF) - Field Flow Fractionation (FFF)
- REVITALIZATION OF OLDER INSTRUMENTAL METHODS : Gravitational and centrifugal sedimentation
- EVOLUTION OF A RESEARCH INSTRUMENT INTO A ROUTINE USER-FRIENDLY INSTRUMENT : Dynamic Light Scattering (DLS, PCS, QELS)
- ATTEMPTS TO MEET EXTREMELY DIFFICULT TECHNICAL CHALLENGES
- Fig. 1 : Schematic of hydrodynamic chromatography separation mechanism and operative forces
- Fig. 2 : Features, benefits, and limitations of hydrodynamic chromatography for PSD analysis
- Fig. 3 : Operational factors and data analysis considerations influencing CHDF PSD analysis
- Fig. 4 : Features, benefits, and limitations of CHDF for PSD characterization
- Fig. 5 : Schematic of FFF instrumentation, separation mechanisms, and channel configurations for SdFFF, FIFFF
- Fig. 6 : FFF separation of mixtures of monodisperse latex beads. a) Field programmed SdFFF with rpm = 10 000 at t = 0. b) FIFFF with polypropylene membrane at 42.9 ml/min. c) ThFFF in acetonitrile with ΔT = 170°C. d) StFFF at 38 ml/min and 11000 rpm
- Fig. 7 : Features, benefits, and limitations of FFF (SdFFF, FIFFF, ThFFF, and StFFF) for PSD characterization
- Fig. 8 : Variations in sedimentation instrumentation and operational factors
- Fig. 9 : Equations of motion and stockes' law for gravitational and centrifugal sedimentation
- Fig. 10 : Line start separation of a nine-component mixture of polystyrene latex standards (107, 298, 496, 597, 707, 895, 993 µm)
- Fig. 11 : Features, benefits, and limitations of sedimentation methods for PSD characterizaton
- Fig. 12 : Simplified representation of scattering intensity l(t) and corresponding autocorrelation function C(t)
- Fig. 13 : Schematic diagram of a DLS particle sizinginstrument, including autodilution (NICOMP Mdel 370)
- Fig. 14 : Features, benefits, and limitations of DLS for PSD characterization
- Fig. 15 : Schematic diagram of the auto-dilution apparatus and optical particle sensor (light blockage)
- Fig. 16 : Separation of a hexamodal mixture of monodisperse particle size standards by SPOS
- Fig. 17 : Combined SPOS/DLS particle size distributionEn ligne : https://drive.google.com/file/d/1LTtdDl7x5D9xMy9rTSzO4qY_ql2VpsY1/view?usp=share [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=34726
in COATINGS TECH > Vol. 17, N° 10 (10/2020) . - p. 28-37[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22362 - Périodique Bibliothèque principale Documentaires Disponible Pressure wet hydrogen peroxide oxidation of chromium sludge / S. Pinho in JOURNAL OF THE SOCIETY OF LEATHER TECHNOLOGISTS & CHEMISTS (JSLTC), Vol. 86, N° 6 (11-12/2002)
Permalink