Accueil
Catégories
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
Fill factor effects in highly-viscous non-isothermal rubber mixing simulations / I. Ahmed in INTERNATIONAL POLYMER PROCESSING, Vol. XXXIV, N° 2 (05/2019)
[article]
Titre : Fill factor effects in highly-viscous non-isothermal rubber mixing simulations Type de document : texte imprimé Auteurs : I. Ahmed, Auteur ; H. Poudyal, Auteur ; Abhilash J. Chandy, Auteur Année de publication : 2019 Article en page(s) : p. 182-194 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Alliages polymères
Caoutchouc
Caoutchouc -- Propriétés physiques
Caoutchouc -- Propriétés thermiques
Fluides non newtoniens
Modèles numériques
Simulation par ordinateurIndex. décimale : 668.4 Plastiques, vinyles Résumé : A finite volume technique in a commercial computational fluid dynamics (CFD) code is employed in this study to simulate transient, incompressible, non-Newtonian and non-isothermal rubber mixing. The simulation processes are conducted in a two-dimensional(2D) domain, where a mixing chamber partially-filled with rubber is equipped with a pair of two-wing non-intermeshing counter-rotating rotors. The main objective is to assess the effect of different fill factors of rubber on dispersive and distributive mixing characteristics by simulating 15 revolutions of the rotors rotating at 20 min−1. 50%, 60%, 70%, 75%, 80% and 90% are the six different fill factors chosen for the study. An Eulerian multiphase method has been applied to solve for the two different phases, rubber and air. The non-Newtonian property of rubber is handled using the shear rate dependent Carreau-Yasuda model, along with an Arrhenius function to include the temperature dependency. In addition to the governing equations related to the conservation of mass, momentum and energy, the volume of fluid (VOF) method is chosen to track the interface between air and rubber. With regard to the results, flow patterns, thermal distributions, viscosity behavior and volume fraction are analyzed for the different fill factors. In addition, dispersive and distributive mixing behavior is also assessed in detail using Lagrangian statistics, such as mixing index, cumulative distribution of maximum shear stress, cluster distribution index (CDI), scale of segregation (SOS) and length of stretch (LOS), calculated from massless particles. Both the Eulerian and Lagrangian results showed that fill factors between 70% and 80% presented the most reasonable and efficient mixing scenario, and also exhibited the best dispersive and distributive mixing characteristics combined. Note de contenu : - Geometry and materials
- Governing equations
- Computational model
- Results and discussion : Thermal distribution - Flow pattern - Rubber volume fraction - Dispersive mixing - Distributive mixingDOI : 10.3139/217.3694 En ligne : https://www.degruyter.com/document/doi/10.3139/217.3694/pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32394
in INTERNATIONAL POLYMER PROCESSING > Vol. XXXIV, N° 2 (05/2019) . - p. 182-194[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20883 - Périodique Bibliothèque principale Documentaires Disponible