Accueil
Catégories
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
Corrosion-resistant composite coatings based on a graphene oxide–metal oxide/urushiol formaldehyde polymer system / Lei Zhang in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 18, N° 5 (09/2021)
[article]
Titre : Corrosion-resistant composite coatings based on a graphene oxide–metal oxide/urushiol formaldehyde polymer system Type de document : texte imprimé Auteurs : Lei Zhang, Auteur ; Wupin Wang, Auteur ; Haitang Wu, Auteur ; Zeyu Zheng, Auteur ; Ming Wei, Auteur ; Xiaohua Huang, Auteur Année de publication : 2021 Article en page(s) : p. 1209-1225 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Anticorrosifs
Anticorrosion
Bases (chimie)
Copolymère urushiol formaldéhyde
Dioxyde de titane
Métaux -- Revêtements protecteurs
Oxyde d'yttrium
Oxyde de graphène
Résistance chimique
Revêtements organiques
SiliceLa silice est la forme naturelle du dioxyde de silicium (SiO2) qui entre dans la composition de nombreux minéraux.
La silice existe à l'état libre sous différentes formes cristallines ou amorphes et à l'état combiné dans les silicates, les groupes SiO2 étant alors liés à d'autres atomes (Al : Aluminium, Fe : Fer, Mg : Magnésium, Ca : Calcium, Na : Sodium, K : Potassium...).
Les silicates sont les constituants principaux du manteau et de l'écorce terrestre. La silice libre est également très abondante dans la nature, sous forme de quartz, de calcédoine et de terre de diatomée. La silice représente 60,6 % de la masse de la croûte terrestre continentale.Index. décimale : 667.9 Revêtements et enduits Résumé : Composite coatings were fabricated based on a graphene oxide–metal oxide/urushiol formaldehyde polymer (GO–TiO2/UFP, GO–SiO2/UFP and GO–Y2O3/UFP) system with modifications, and its effectiveness in corrosion protection of metal substrates was demonstrated. First, a GO–TiO2 composite was synthesized using titanium dioxide loading on GO via 3-aminopropyltriethoxysilane (APTES). The GO–Y2O3 composite was synthesized using nano-yttrium oxide intercalating into GO through two different silane coupling agents. The GO–SiO2 composite was synthesized via an in-situ two-step sol-gel process utilizing APTES and tetraethylorthosilicate (TEOS) in an aqueous ethanol solution. The morphology and structure of the GO–metal oxide composites (GO–TiO2, GO–Y2O3 and GO–SiO2) were studied. Subsequently, GO–metal oxides were incorporated into UFP to investigate the composite’s effectiveness in corrosion protection of metal substrates. Compared with GO–TiO2/UFP and GO–Y2O3/UFP, GO–SiO2/UFP showed superior alkali-resistance enhancing performance. Additionally, GO crosslinked with APTES–TiO2 via covalent bonds and the well-dispersed GO–TiO2 in UFP improved the electrochemical corrosion properties of the UFP coatings, most likely due to the obstruction of the diffusion pathways inside the UFP coating matrix, thus preventing the diffusion of penetrating species. It was revealed that the corrosion resistance of GO–TiO2/UFP composite coating was noticeably higher than GO–SiO2/UFP and GO–Y2O3/UFP composite coatings. Note de contenu : - MATERIALS AND METHODS : Materials - Fabrication process of the composite coatings - Characterization of composite coatings - Analysis of chemical resistance properties
- RESULTS AND DISCUSSION : FTIR analysis - Microstructure and chemical composition of GO–metal oxide in UFP - XRD analysis - XPS analysis - Electrochemical tests - Chemical resistance of the UFP composite coatings - Corrosion protection mechanism
- Table 1 : The XPS results for the GO–TiO2, GO–Y2O3 and GO–SiO2 sample
- Table 2 : Electrochemical parameters obtained from the polarization curves of the UFP coatings containing different contents of GO–TiO2, GO–Y2O3, GO–SiO2 and MGO
- Table 3 : Electrochemical parameters obtained from the EIS spactra of the UFP coatings containing different contents of GO–TiO2, GO–Y2O3 and GO–SiO2
- Table 4 : Resistance of the GO–TiO2/UFP, GO–Y2O3/UFP and GO–SiO2/UFP composite coatings against chemical attack after immersion in 30% H2SO4, 10% NaOH and 3% NaCl solution at room temperatureDOI : https://doi.org/10.1007/s11998-021-00480-2 En ligne : https://link.springer.com/content/pdf/10.1007/s11998-021-00480-2.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=36426
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 18, N° 5 (09/2021) . - p. 1209-1225[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22991 - Périodique Bibliothèque principale Documentaires Disponible Preparation, characterization, and properties of graphene oxide/urushiol-formaldehyde polymer composite coating / Lei Zhang in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 15, N° 6 (11/2018)
[article]
Titre : Preparation, characterization, and properties of graphene oxide/urushiol-formaldehyde polymer composite coating Type de document : texte imprimé Auteurs : Lei Zhang, Auteur ; Haitang Wu, Auteur ; Ming Wei ; Zeyu Zheng ; Dinh Duy Vu ; Thi Tuyet Xuan Bui ; Xiaohua Huang Année de publication : 2018 Article en page(s) : p. 1343-1356 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Anticorrosifs
Anticorrosion
Caractérisation
Copolymère urushiol formaldéhyde
Dispersions et suspensions -- Stabilité
Electrochimie
Revêtements
Revêtements -- Propriétés mécaniques
Revêtements -- Propriétés physiques
UrushiolL’urushiol est une toxine organique que l'on trouve dans les plantes de la famille des Anacardiaceae, spécialement dans le genre Toxicodendron (par exemple le sumac grimpant en Amérique du Nord). Il provoque des allergies de la peau ou dermatites, pouvant être importantes, au contact de ces plantes. Le nom vient du mot japonais urushi (漆?), qui désigne une laque produite dans l'Asie orientale à partir du suc des arbres kiurushi (arbre à laque). L'oxydation et la polymérisation de l'urushiol dans le suc de l'arbre en présence d'humidité permet de former une laque dure utilisée traditionnellement pour produire des objets d'art laqués en Chine et au Japon.Index. décimale : 667.9 Revêtements et enduits Résumé : Graphene oxide (GO) was modified by 3-methacryloxypropyltrimethoxysilane (MPS) to obtain modified graphene oxide (MGO). MGO was dispersed in urushiol-formaldehyde polymer by mechanical mixing and ultrasonic dispersion, and MGO/urushiol-formaldehyde polymer (UFP) coatings with different MGO contents were fabricated. The microstructure, physico-mechanical properties, and electrochemical properties of the MGO/UFP composite coatings were investigated. The results indicated that the hardness, adhesion, and corrosion resistance of the MGO/UFP composite coatings were obviously enhanced compared with the pure UFP coatings. The hardness and the adhesion grade of the MGO/UFP composite coatings with 3.5 wt% MGO (GO, 1.5 wt%, and MPS, 2.0 wt%) reached 6H and 2, respectively. Additionally, GO connected with MPS by chemical bond and the well-dispersed MGO in UFP could significantly enhance the anticorrosion performance of the UFP coatings, which could result from bending the diffusion pathway of penetrant species in the UFP coating matrix. Note de contenu : - MATERIALS AND METHODS : Materials - Synthesis of the GO/UFP and MGO/UFP composite coatings - Preparation of the MGO/UFP composite films - Characterization of the MGO/UFP composite coatings - Chemical corrosion-resistant property - Electrochemical measurements
- RESULTS AND DISCUSSION : The dispersion stability of the GO suspension - Characterization of the MGO/UFP composite coatings - Electrochemical measurementsDOI : 10.1007/s11998-018-0084-1 En ligne : https://link.springer.com/content/pdf/10.1007%2Fs11998-018-0084-1.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=31348
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 15, N° 6 (11/2018) . - p. 1343-1356[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20388 - Périodique Bibliothèque principale Documentaires Disponible A review of high-quality epoxy resins for corrosion-resistant applications / Shams Anwar in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 21, N° 2 (03/2024)
[article]
Titre : A review of high-quality epoxy resins for corrosion-resistant applications Type de document : texte imprimé Auteurs : Shams Anwar, Auteur ; Xianguo Li, Auteur Année de publication : 2024 Article en page(s) : p. 461-480 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Anticorrosifs
Anticorrosion
Chimie analytique
Composites à fibres de carbone
Copolymère phénolique époxy
Copolymère urushiol formaldéhyde
Electrochimie
Oxyde de graphène
Revêtements -- Détérioration
Revêtements organiquesIndex. décimale : 667.9 Revêtements et enduits Résumé : Corrosion is a significant challenge in many practical applications, leading to the deterioration of metal infrastructure and equipment. A literature review indicates that various epoxy resins (ERs) and epoxy phenolic resins (EPRs) based coatings are available and are effectively applied on steel and aluminum surfaces for protection against a corrosive environment. The corrosion-resistant performance of ERs and EPRs can be further improved by incorporating numerous chemical compounds through improved bonding, such as inorganic compounds and carbon-based materials, e.g., zinc oxide (ZnO), titanium dioxide (TiO2), silicon dioxide (SiO2), carbon fiber, carbon nanotube (CNTs) and graphene oxide (GO). Surface heterogeneity (surface pores) of coatings contributes to reduced corrosion protection as corrosion species can diffuse to these inconsistencies and break the coating structure of the organic coating. However, after over a hundred years of research and development, the degradation/failure mechanism of organic coatings is still under study. This paper provides an overview of the current state-of-the-art knowledge of the numerous protective organic coatings and coating approaches and examines coating performance and mechanism for the coating degradation and failure in a corrosive environment. Finally, a summary is presented on the understanding of the mechanisms and challenges associated with, and critical factors influencing, coating durability and predictive formulation against coating damage. Note de contenu : - DEGRADATION MECHANISM OF ORGANIC COATINGS : Ionic migration - Conduction route development
FUNDAMENTAL OF EPOXY RESINS (ERS) : Bisphenol ERs - Cycloaliphatic ERs - Novolac ERs - Trifunctional and tetrafunctional ERs - Halogenated ERs
- Fundamentals of epoxy phenolic resins (EPRs)
- EPOXY-BASED POLYMER COMPOSITES : Inorganic polymer composites - Thermoplastic polymer composites - Carbon fiber composites - Carbon nanotube composites - Graphene oxide (GO) with urushiol-formaldehyde composites
- CORROSION-RESISTANT EPOXY RESIN COATINGS
- FUTURE RESEARCH AND RECOMMENDATIONSDOI : https://doi.org/10.1007/s11998-023-00865-5 En ligne : https://drive.google.com/file/d/1UZvCznuLdXEbcwwUikB0OJiVBulmBaw2/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=40770
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 21, N° 2 (03/2024) . - p. 461-480[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 24736 - Périodique Bibliothèque principale Documentaires Disponible