Accueil
Catégories
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
Impact of humid environment on structural and mechanical properties of biobased polylactide / A. Jaszkiewiez in INTERNATIONAL POLYMER PROCESSING, Vol. XXX, N° 4 (08/2015)
[article]
Titre : Impact of humid environment on structural and mechanical properties of biobased polylactide Type de document : texte imprimé Auteurs : A. Jaszkiewiez, Auteur ; A. K. Bledzki, Auteur ; A. Meljon, Auteur Année de publication : 2015 Article en page(s) : p. 522-523 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Analyse mécanique dynamique
Atmosphère humide
Biomatériaux
Biopolymères -- Effets de l'humidité
Biopolymères -- Propriétés mécaniques
Granulés plastiques
Humidité -- Absorption
Matériaux -- Séchage
Polylactique, AcideL'acide polylactique (anglais : polylactic acid, abrégé en PLA) est un polymère entièrement biodégradable utilisé dans l'alimentation pour l'emballage des œufs et plus récemment pour remplacer les sacs et cabas en plastiques jusqu'ici distribués dans les commerces. Il est utilisé également en chirurgie où les sutures sont réalisées avec des polymères biodégradables qui sont décomposés par réaction avec l’eau ou sous l’action d’enzymes. Il est également utilisé pour les nouveaux essais de stent biodégradable.
Le PLA peut-être obtenu à partir d'amidon de maïs, ce qui en fait la première alternative naturelle au polyéthylène (le terme de bioplastique est utilisé). En effet, l'acide polylactique est un produit résultant de la fermentation des sucres ou de l'amidon sous l'effet de bactéries synthétisant l'acide lactique. Dans un second temps, l'acide lactique est polymérisé par un nouveau procédé de fermentation, pour devenir de l'acide polylactique.
Ce procédé conduit à des polymères avec des masses molaires relativement basses. Afin de produire un acide polylactique avec des masses molaires plus élevées, l'acide polylactique produit par condensation de l'acide lactique est dépolymérisé, produisant du lactide, qui est à son tour polymérisé par ouverture de cycle.
Le PLA est donc l’un de ces polymères, dans lequel les longues molécules filiformes sont construites par la réaction d’un groupement acide et d’une molécule d’acide lactique sur le groupement hydroxyle d’une autre pour donner une jonction ester. Dans le corps, la réaction se fait en sens inverse et l’acide lactique ainsi libéré est incorporé dans le processus métabolique normal. On obtient un polymère plus résistant en utilisant l'acide glycolique, soit seul, soit combiné à l’acide lactique.Index. décimale : 668.4 Plastiques, vinyles Résumé : The study focused on the material behavior of two commercial polylactide grades affected by structural changes due to exposure to humid environment. Additionally, the impact of temperature and environment humidity on the moisture uptake and drying process of polymer granulate was examined to evaluate the necessary pre-treatment conditions prior to the polylactide processing. Also some process relevant aspects, such as the impact of polymer pre-drying on its degradation were characterised. In the first part of the experimental work, moisture absorption mechanisms in relation to conditioning parameters were investigated using Karl Fischer titration method. It was shown that the moisture uptake rate correlates with temperature and humidity of the environment. Furthermore, the drying process of polylactide pellets was conducted and analysed by additional melt flow rate measurements to determine the effect of drying conditions on the premature polymer degradation and melt properties. Investigated polymers demonstrated rheological behavior dependent not only on the residual moisture content, but also on drying temperature and time. In the last section of the study flexural and tensile tests were performed in order to determine the influence of moisture uptake on the characteristics of conditioned polylactide. Mechanical strength of polylactide decreased in both, flexural and tensile tests with increasing moisture content in the samples. Moreover, distinctive differences in polylactide mechanical behavior were observed in both tests. Note de contenu : - EXPERIMENTAL SECTION : Polymers - Analysis of moisture uptake and its impact on polymer degradation - Analysis of drying conditions and its influence on polymer characteristics - Processing conditions - Mechanical analysis
- RESULTS AND DISCUSSION : Moisture uptake and drying conditions - Mechanical analysisDOI : 10.3139/217.3103 En ligne : https://drive.google.com/file/d/1bgdHCJsBTozVZltCNjWu9jaCJOzWc2u-/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=24862
in INTERNATIONAL POLYMER PROCESSING > Vol. XXX, N° 4 (08/2015) . - p. 522-523[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 17359 - Périodique Bibliothèque principale Documentaires Disponible Melt spinning of bio-based polymers : Overview on properties and potential of melt spinnable biopolymers / Julien Davin in CHEMICAL FIBERS INTERNATIONAL, (09/2016)
[article]
Titre : Melt spinning of bio-based polymers : Overview on properties and potential of melt spinnable biopolymers Type de document : texte imprimé Auteurs : Julien Davin, Auteur ; Pavan Kumar Manvi, Auteur ; Gunnar Seide, Auteur ; Thomas Gries, Auteur Année de publication : 2016 Article en page(s) : p. 57-58 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Biopolymères
Biopolymères -- Propriétés mécaniques
Etat fondu (matériaux)
Extrusion filage
Fil entièrement étiré
Fil partiellement orienté
Filature
Polyéthylène téréphtalate
Polylactique, AcideL'acide polylactique (anglais : polylactic acid, abrégé en PLA) est un polymère entièrement biodégradable utilisé dans l'alimentation pour l'emballage des œufs et plus récemment pour remplacer les sacs et cabas en plastiques jusqu'ici distribués dans les commerces. Il est utilisé également en chirurgie où les sutures sont réalisées avec des polymères biodégradables qui sont décomposés par réaction avec l’eau ou sous l’action d’enzymes. Il est également utilisé pour les nouveaux essais de stent biodégradable.
Le PLA peut-être obtenu à partir d'amidon de maïs, ce qui en fait la première alternative naturelle au polyéthylène (le terme de bioplastique est utilisé). En effet, l'acide polylactique est un produit résultant de la fermentation des sucres ou de l'amidon sous l'effet de bactéries synthétisant l'acide lactique. Dans un second temps, l'acide lactique est polymérisé par un nouveau procédé de fermentation, pour devenir de l'acide polylactique.
Ce procédé conduit à des polymères avec des masses molaires relativement basses. Afin de produire un acide polylactique avec des masses molaires plus élevées, l'acide polylactique produit par condensation de l'acide lactique est dépolymérisé, produisant du lactide, qui est à son tour polymérisé par ouverture de cycle.
Le PLA est donc l’un de ces polymères, dans lequel les longues molécules filiformes sont construites par la réaction d’un groupement acide et d’une molécule d’acide lactique sur le groupement hydroxyle d’une autre pour donner une jonction ester. Dans le corps, la réaction se fait en sens inverse et l’acide lactique ainsi libéré est incorporé dans le processus métabolique normal. On obtient un polymère plus résistant en utilisant l'acide glycolique, soit seul, soit combiné à l’acide lactique.
TexturationProcédé de frisure, conférant des boucles au hasard, ou modifiant d'une autre manière un fil de filament continu afin d'augmenter son pouvoir couvrant, sa résilience, sa résistance à l'abrasion, sa chaleur, son pouvoir d'isolation thermique, son pouvoir d'absorption d'humidité, ou pour lui donner une texture de surface différente. Les procédés de texturation peuvent être regroupés en six catégories.
Traction (mécanique)Index. décimale : 677.4 Textiles artificiels Résumé : An increasing trend for biopolymer production and application is being seen due to environmental awareness in the past years and eco-friendliness of biopolymers. ln the textile sector biopolymers occupy a relatively low market share due to their insufficient mechanical properties compared to conventional polymers, challenges during polymer processing and their higher price. The production of biopolymers (commonly known as bioplastics) is continuously increasing and recorded as 1.5 million tons in 2012, which is expected to reach to 6.7 million metric tons in 2018. Note de contenu : - FIGURES : 1. Classification of biopolymers - 2. Worldwide distribution of biopolymers by type - 3. Worldwide distribution of biopolymers by application (in 1000 tons) - 4. Tensile strength of biopolymers - 5. POY and FDY-like setup for melt spinning of PLA - 6. Mechanical properties of PLA yarn in comparison to PET yarn - 7. T-shirt from textured PLA yarn
- Process parameters for melt spinning and texturing of PLAEn ligne : https://drive.google.com/file/d/11BEVj-V7KItdrqtQge4q2kWf9ouBctg1/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=26933
in CHEMICAL FIBERS INTERNATIONAL > (09/2016) . - p. 57-58[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 18302 - Périodique Bibliothèque principale Documentaires Disponible Modification of PLA by reactive extrusion for industrial fiber applications / C. Burgstaller in CHEMICAL FIBERS INTERNATIONAL, Vol. 72, N° 1 (03/2022)
[article]
Titre : Modification of PLA by reactive extrusion for industrial fiber applications Type de document : texte imprimé Auteurs : C. Burgstaller, Auteur ; Simon Riepler, Auteur Année de publication : 2022 Article en page(s) : p. 40-41 Langues : Anglais (eng) Catégories : Alliages polymères
Allongement à la rupture
Biopolymères -- Propriétés mécaniques
Elasticité
Extrusion réactive
Fibres textiles -- Propriétés mécaniques
Fibres textiles synthétiques
Matériaux -- Modifications chimiques
Polylactique, AcideL'acide polylactique (anglais : polylactic acid, abrégé en PLA) est un polymère entièrement biodégradable utilisé dans l'alimentation pour l'emballage des œufs et plus récemment pour remplacer les sacs et cabas en plastiques jusqu'ici distribués dans les commerces. Il est utilisé également en chirurgie où les sutures sont réalisées avec des polymères biodégradables qui sont décomposés par réaction avec l’eau ou sous l’action d’enzymes. Il est également utilisé pour les nouveaux essais de stent biodégradable.
Le PLA peut-être obtenu à partir d'amidon de maïs, ce qui en fait la première alternative naturelle au polyéthylène (le terme de bioplastique est utilisé). En effet, l'acide polylactique est un produit résultant de la fermentation des sucres ou de l'amidon sous l'effet de bactéries synthétisant l'acide lactique. Dans un second temps, l'acide lactique est polymérisé par un nouveau procédé de fermentation, pour devenir de l'acide polylactique.
Ce procédé conduit à des polymères avec des masses molaires relativement basses. Afin de produire un acide polylactique avec des masses molaires plus élevées, l'acide polylactique produit par condensation de l'acide lactique est dépolymérisé, produisant du lactide, qui est à son tour polymérisé par ouverture de cycle.
Le PLA est donc l’un de ces polymères, dans lequel les longues molécules filiformes sont construites par la réaction d’un groupement acide et d’une molécule d’acide lactique sur le groupement hydroxyle d’une autre pour donner une jonction ester. Dans le corps, la réaction se fait en sens inverse et l’acide lactique ainsi libéré est incorporé dans le processus métabolique normal. On obtient un polymère plus résistant en utilisant l'acide glycolique, soit seul, soit combiné à l’acide lactique.
ThermoplastiquesUne matière thermoplastique désigne une matière qui se ramollit (parfois on observe une fusion franche) d'une façon répétée lorsqu'elle est chauffée au-dessus d'une certaine température, mais qui, au-dessous, redevient dure. Une telle matière conservera donc toujours de manière réversible sa thermoplasticité initiale. Cette qualité rend le matériau thermoplastique potentiellement recyclable (après broyage). Cela implique que la matière ramollie ne soit pas thermiquement dégradée et que les contraintes mécaniques de cisaillement introduites par un procédé de mise en forme ne modifient pas la structure moléculaire.Index. décimale : 677.4 Textiles artificiels Résumé : In this work, the reactive blending of PLA with other thermoplastics was investigated to improve the elasticity of PLA fibers. It was found that it is possible to improve the elongation at break from 50% up to 2000/o at comparable tenacity values by properly designing the blend and the reactive process with it. Future investigations will need to clarify the stability of these processes in a larger scale, as well as the biodegradability of such blends. En ligne : https://drive.google.com/file/d/1YCNUMyg71aLc6gfHwGAUzJlxUQG50M11/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=37399
in CHEMICAL FIBERS INTERNATIONAL > Vol. 72, N° 1 (03/2022) . - p. 40-41[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23331 - Périodique Bibliothèque principale Documentaires Disponible Recent advances on melt-spun fibers from biodegradable polymers and their composites / Mpho Phillip Motloung in INTERNATIONAL POLYMER PROCESSING, Vol. 37, N° 5 (2022)
[article]
Titre : Recent advances on melt-spun fibers from biodegradable polymers and their composites Type de document : texte imprimé Auteurs : Mpho Phillip Motloung, Auteur ; Tladi Gideon Mofokeng, Auteur ; Teboho Clement Mokhena, Auteur ; Suprakas Sinha Ray, Auteur Année de publication : 2022 Article en page(s) : p. 523-540 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Biopolymères -- Propriétés mécaniques
Etat fondu (matériaux)
Extrusion filage
Géotextiles
Morphologie (matériaux)
Polyacétate de vinyle
Polybutylène succinate
PolyhydroxyalcanoatesLes polyhydroxyalcanoates ou PHAs sont des polyesters biodégradables produits naturellement par fermentation bactérienne de sucres ou lipides. Ils sont produits par les bactéries en tant que stockage de carbone et d'énergie. Le terme polyhydroxyalcanoate regroupe plus de 150 monomères différents qui conduisent à des propriétés parfois très différentes. Ces polymères peuvent ainsi présenter des propriétés thermoplastiques ou d'élastomères avec des points de fusion allant de 40 à 180°C.
Polyhydroxybutyrate-co-valérate
Polylactique, AcideL'acide polylactique (anglais : polylactic acid, abrégé en PLA) est un polymère entièrement biodégradable utilisé dans l'alimentation pour l'emballage des œufs et plus récemment pour remplacer les sacs et cabas en plastiques jusqu'ici distribués dans les commerces. Il est utilisé également en chirurgie où les sutures sont réalisées avec des polymères biodégradables qui sont décomposés par réaction avec l’eau ou sous l’action d’enzymes. Il est également utilisé pour les nouveaux essais de stent biodégradable.
Le PLA peut-être obtenu à partir d'amidon de maïs, ce qui en fait la première alternative naturelle au polyéthylène (le terme de bioplastique est utilisé). En effet, l'acide polylactique est un produit résultant de la fermentation des sucres ou de l'amidon sous l'effet de bactéries synthétisant l'acide lactique. Dans un second temps, l'acide lactique est polymérisé par un nouveau procédé de fermentation, pour devenir de l'acide polylactique.
Ce procédé conduit à des polymères avec des masses molaires relativement basses. Afin de produire un acide polylactique avec des masses molaires plus élevées, l'acide polylactique produit par condensation de l'acide lactique est dépolymérisé, produisant du lactide, qui est à son tour polymérisé par ouverture de cycle.
Le PLA est donc l’un de ces polymères, dans lequel les longues molécules filiformes sont construites par la réaction d’un groupement acide et d’une molécule d’acide lactique sur le groupement hydroxyle d’une autre pour donner une jonction ester. Dans le corps, la réaction se fait en sens inverse et l’acide lactique ainsi libéré est incorporé dans le processus métabolique normal. On obtient un polymère plus résistant en utilisant l'acide glycolique, soit seul, soit combiné à l’acide lactique.
Polymères -- Biodégradation
Polymères en médecine
Structure cristalline (solide)Index. décimale : 668.4 Plastiques, vinyles Résumé : Biodegradable polymers have become important in different fields of application, where biodegradability and biocompatibility are required. Herein, the melt spinning of biodegradable polymers including poly(lactic acid), poly(butylene succinate), polyhydroxyalkanoate (PHA), poly(ɛ-caprolactone) and their biocomposites is critically reviewed. Biodegradable polymer fibers with added functionalities are in high demand for various applications, including biomedical, textiles, and others. Melt spinning is a suitable technique for the development of biodegradable polymer fibers in a large-scale quantity, and fibers with a high surface area can be obtained with this technique. The processing variables during spinning have a considerable impact on the resulting properties of the fibers. Therefore, in this review, the processing-property relationship in biodegradable polymers, blends, and their composites is provided. The morphological characteristics, load-bearing properties, and the potential application of melt-spun biodegradable fibers in various sectors are also provided. Note de contenu : - Biodegradable polymers
- Melt spinning
- Melt-spinning of biopolymers and biocomposites : Surface morphology and fiber diameter - Crystallinity and orientation - Mechanical properties
- Market analysis of biopolymer fibers
- Applications of melt-spun bipolymers and biocomposites : Biomedical application - Geotextile applications - Other applications
- Table 1 : Fiber morphology of melt-spun biopolymers and biocomposites
- Table 2 : Mechanical properties of various melt-spun biodegradable polymers at different spinning conditionsDOI : https://doi.org/10.1515/ipp-2022-0023 En ligne : https://drive.google.com/file/d/1qs5dY5AXnObQRe_EgCQvp67xej_fn0J3/view?usp=share [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=38327
in INTERNATIONAL POLYMER PROCESSING > Vol. 37, N° 5 (2022) . - p. 523-540[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23740 - Périodique Bibliothèque principale Documentaires Disponible Toughened poly(butylene succinate)/polylactide/poly(vinyl acetate) ternary blend without sacrificing the strength / Wei Miao in INTERNATIONAL POLYMER PROCESSING, Vol. 37, N° 5 (2022)
[article]
Titre : Toughened poly(butylene succinate)/polylactide/poly(vinyl acetate) ternary blend without sacrificing the strength Type de document : texte imprimé Auteurs : Wei Miao, Auteur ; Wenxi Cheng, Auteur ; Shanhong Xu, Auteur ; Renjie Wang, Auteur ; Jiaheng Yao, Auteur ; Weiqiang Song, Auteur ; Haowei Lin, Auteur ; Mengya Shang, Auteur ; Xuefei Zhou, Auteur Année de publication : 2022 Article en page(s) : p. 541-548 Langues : Anglais (eng) Catégories : Alliages polymères
Alliages polymères -- propriétés mécaniques
Biopolymères -- Propriétés mécaniques
Caractérisation
Polyacétate de vinyle
Polybutylène succinate
Polylactique, AcideL'acide polylactique (anglais : polylactic acid, abrégé en PLA) est un polymère entièrement biodégradable utilisé dans l'alimentation pour l'emballage des œufs et plus récemment pour remplacer les sacs et cabas en plastiques jusqu'ici distribués dans les commerces. Il est utilisé également en chirurgie où les sutures sont réalisées avec des polymères biodégradables qui sont décomposés par réaction avec l’eau ou sous l’action d’enzymes. Il est également utilisé pour les nouveaux essais de stent biodégradable.
Le PLA peut-être obtenu à partir d'amidon de maïs, ce qui en fait la première alternative naturelle au polyéthylène (le terme de bioplastique est utilisé). En effet, l'acide polylactique est un produit résultant de la fermentation des sucres ou de l'amidon sous l'effet de bactéries synthétisant l'acide lactique. Dans un second temps, l'acide lactique est polymérisé par un nouveau procédé de fermentation, pour devenir de l'acide polylactique.
Ce procédé conduit à des polymères avec des masses molaires relativement basses. Afin de produire un acide polylactique avec des masses molaires plus élevées, l'acide polylactique produit par condensation de l'acide lactique est dépolymérisé, produisant du lactide, qui est à son tour polymérisé par ouverture de cycle.
Le PLA est donc l’un de ces polymères, dans lequel les longues molécules filiformes sont construites par la réaction d’un groupement acide et d’une molécule d’acide lactique sur le groupement hydroxyle d’une autre pour donner une jonction ester. Dans le corps, la réaction se fait en sens inverse et l’acide lactique ainsi libéré est incorporé dans le processus métabolique normal. On obtient un polymère plus résistant en utilisant l'acide glycolique, soit seul, soit combiné à l’acide lactique.Index. décimale : 668.4 Plastiques, vinyles Résumé : In this paper, poly(butylene succinate) (PBS)/polylactide (PLA)/poly(vinyl acetate) (PVAc) ternary blends were prepared via directly blending. The content of PBS in each sample was fixed at 30 wt% and that of PVAc was different, 2, 4 or 6%. PBS/PLA (30/70, g/g) and PLA/PVAc (66/4, g/g) were also prepared for comparison. XRD and DSC results showed that PVAc was miscible with PLA, and the crystallinity (X c ) of PLA in PBS/PLA increased by adding PBS, but X c of PBS and PLA in PBS/PLA/PVAc ternary blends reduced by adding PVAc. SEM images showed that PBS was dispersed as droplets in each blend The addition of PVAc improved the compatibility between PBS and PLA, and the fracture surfaces of the ternary blends became rougher than that of PBS/PLA. The tensile and impact tests results showed that PVAc could enhance PLA and the highly toughened PBS/PLA blend. Finally, PBS/PLA/PVAc blend with 2% of PVAc was highly toughened without sacrificing its strength. Its strength was the same as that of PBS/PLA, while the elongation at break and impact strength of the former were 2.8 and 2.5 times those of the latter. Note de contenu : - EXPERIMENTAL : Materials - Sample preparation - X-ray diffraction (XRD) analysis - Differential scanning calorimetry (DSC) - Scanning electron microscopy (SEM) - Tensile and impact properties
- RESULTS AND DISCUSSION : XRD analysis - DSC analysis - Morphologies of the blends - Tensile properties and impact strength
- Table 1 : Partial parameters of the PLA component in PBS/PLA and PBS/PLA/PVAc blends on DSC curves
- Table 2 : Tensile properties of neat PLA, PBS/PLA, PBS/PLA/PVAc blends and PLA/PVAc6DOI : https://doi.org/10.1515/ipp-2022-4219 En ligne : https://drive.google.com/file/d/1uEyMULhgqMD9qVdlV0AvGBdzxZu1mLXV/view?usp=share [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=38328
in INTERNATIONAL POLYMER PROCESSING > Vol. 37, N° 5 (2022) . - p. 541-548[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23740 - Périodique Bibliothèque principale Documentaires Disponible Toughening of polylactide by bio-based and petroleum-based thermoplastic elastomers / Y. Meyva in INTERNATIONAL POLYMER PROCESSING, Vol. XXX, N° 5 (11/2015)
PermalinkPermalink