Accueil
Catégories
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
[article]
Titre : Chemical properties of polymers Type de document : texte imprimé Auteurs : Tipanna Melkeri, Auteur Année de publication : 2021 Article en page(s) : p. 98-100 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Polymères -- Propriétés chimiques Index. décimale : 668.9 Polymères Résumé : Chemical resistance is the ability of a polymeric material to maintain its original properties such as mechanical, electrical, optical etc. when exposed to certain chemicals. The chemical structure of the polymer and functional group present in it is responsible for chemical resistance. Polymers are used in plastics as well as paints. Chemical resistance testing on plastic automotive materials is essential to gauge how such parts withstand the influence of mostly aggressive, automotive fluids such as fuels, biofuels, cleaners, cooling liquids and lubricants, often in combination with high temperature fluctuations. Steel structure has to be protected from the corrosion atmosphere specially in chemical industry so these structures are painted. The polymer used in these paints are must be resistance towards acid, alkali, solvents and other reactive chemical reagent. It is important that these polymer must exhibits good chemical resistance. Polymer can be affected by two ways either the chemical reagent acts as a solvent or chemical reagent attacks the polymeric material. Factors affecting the chemical resistance of the polymer are time of exposure, temperature of exposure, concentration of reagent, stress present in polymer and other ingredients present in plastics or paint formulations. Note de contenu : - INTRODUCTION : The chemical reagent act as a solvent - Chemical reagent attacks the polymeric material
- FACTORS AFFECTING CHEMICAL RESISTANCE : I) Time of exposure in the presence of the indicated chemical reagent - II) Temperature of expose - III) Stresses in molded and external to which the application is subjected - IV) Concentration of the indicated chemical reagent - V) Presence of other ingredients
- Solvent resistance testing : Test procedure - Specimen size - Data
- Table 1 : Material, Hansen parameters and Hilderbrand solubility parameter
- Table 2 : Chemical resistance of plasticsEn ligne : https://drive.google.com/file/d/1Z_E7kfN2Jk8k72my223vaKHmHsHxkW1R/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=35229
in PAINTINDIA > Vol. LXXI, N° 1 (01/2021) . - p. 98-100[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22557 - Périodique Bibliothèque principale Documentaires Disponible Chitine and chitosan polymer : a review of recent advances and prospective applications / Snehal Sharad Kamble in PAINTINDIA, Vol. LXVIII, N° 7 (07/2018)
[article]
Titre : Chitine and chitosan polymer : a review of recent advances and prospective applications Type de document : texte imprimé Auteurs : Snehal Sharad Kamble, Auteur Année de publication : 2018 Article en page(s) : p. 69-78 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Biopolymères
Chélates
Chitine
ChitosaneLe chitosane ou chitosan est un polyoside composé de la distribution aléatoire de D-glucosamine liée en ß-(1-4) (unité désacétylée) et de N-acétyl-D-glucosamine (unité acétylée). Il est produit par désacétylation chimique (en milieu alcalin) ou enzymatique de la chitine, le composant de l'exosquelette des arthropodes (crustacés) ou de l'endosquelette des céphalopodes (calmars...) ou encore de la paroi des champignons. Cette matière première est déminéralisée par traitement à l'acide chlorhydrique, puis déprotéinée en présence de soude ou de potasse et enfin décolorée grâce à un agent oxydant. Le degré d'acétylation (DA) est le pourcentage d'unités acétylées par rapport au nombre d'unités totales, il peut être déterminé par spectroscopie infrarouge à transformée de Fourier (IR-TF) ou par un titrage par une base forte. La frontière entre chitosane et chitine correspond à un DA de 50 % : en deçà le composé est nommé chitosane, au-delà , chitine. Le chitosane est soluble en milieu acide contrairement à la chitine qui est insoluble. Il est important de faire la distinction entre le degré d'acétylation (DA) et le degré de déacétylation (DD). L'un étant l'inverse de l'autre c'est-à -dire que du chitosane ayant un DD de 85 %, possède 15 % de groupements acétyles et 85 % de groupements amines sur ses chaînes.
Le chitosane est biodégradable et biocompatible (notamment hémocompatible). Il est également bactériostatique et fongistatique.
Le chitosane est également utilisé pour le traitement des eaux usées par filtration ainsi que dans divers domaines comme la cosmétique, la diététique et la médecine.
Corrosion
Polymères -- Propriétés chimiques
Polymères en médecine
Polyuréthanes
Revêtement autoréparantIndex. décimale : 668.9 Polymères Résumé : Chitin is the most abundant natural amino polysaccharide and is estimated to be produced annually almost as much as cellulose. Thé de-acetylated chitin derivative, chitosan is more useful and interesting bioactive polymer materials with innovative properties,functions and diverse applications. It has become of great interest not only as an underutilized resource, but also as a, new functional material of high potential in various fields, and recent progress in chitin chemistry is quite noteworthy. Despite its biodegradability, it has many reactive amino side groups, which offer possibilities of chemical modifications, formation of a large variety of useful derivatives that are commercially available or can be made available via graft reactions and ionic interactions .The purpose of this review is to take a Gloser look at chitin and chitosan applications. Based on current research and existing products, some new and futuristic approaches in this fascinating area are thoroughly discussed. Note de contenu : - INTRODUCTION : Reason for choosing chitin and chitosan
- PROPERTIES OF CHITIN & CHITOSAN : Chemical properties of chitosan
- SELF-HEALING COATING BASED ON CHITOSAN : UV-initiated self-healing of oxolane-chitosan-polyurethane (OXO-CHI-PUR) networks
- APPLICATION OF CHITOSAN AS CHEATING RESIN
- CHITOSAN AS A SMART COATING FOR CORROSION PROTECTION OF ALUMINIUM ALLOY 2014
- OTHER POTENTIAL USES OF CHITOSAN : Agricultural and horticultural use - Natural biocontrol and elicitor - Water filtration - Bio printing - Winemaking and fungal source chitosan - Potential industrial uses - Biomedical uses
- RESEARCH : Weight loss - Food preservationEn ligne : https://drive.google.com/file/d/14bFCbwxw7SGHbwKEkCRRX1bqyl58OhL4/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=31049
in PAINTINDIA > Vol. LXVIII, N° 7 (07/2018) . - p. 69-78[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20224 - Périodique Bibliothèque principale Documentaires Disponible POSS-vinyl-urethane acrylate-based nanohybrid coating materials / Yasemin Eren in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 21, N° 2 (03/2024)
[article]
Titre : POSS-vinyl-urethane acrylate-based nanohybrid coating materials Type de document : texte imprimé Auteurs : Yasemin Eren, Auteur ; Ferhat Sen, Auteur ; Suzan Abdurrahmanoglu, Auteur ; Sevim Karatas, Auteur Année de publication : 2024 Article en page(s) : p. 575-587 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Copolymère uréthane acrylique
Formulation (Génie chimique)
Matériaux hybrides
Polymères -- Propriétés chimiques
Polymères -- Propriétés thermiques
Réaction thiol-ène
Revêtements -- Séchage sous rayonnement ultraviolet
Revêtements organiques
Silsesquioxanes oligomères polyhèdresIndex. décimale : 667.9 Revêtements et enduits Résumé : The effect of POSS-vinyl-heptaisobutyl-substituted (POSSV) compounds as an inorganic additive on the thermal and physical properties of nanohybrid coating materials based on urethane acrylate (UA) resin has been investigated. A diol compound obtained from the reaction of itaconic acid and 1,2-epoxy cyclohexane has been used to produce an UV curable epoxy-based urathane acrylate resin. Nanohybrid coating materials were obtained by curing the UA resin with UV radiation through the thiol–ene reaction, mixed with various amounts of POSSV compounds. The structure of the UA resin was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy techniques. The UV curing process was also studied by the double bond conversion method. Aggregation of the nanohybrid materials was determined by X-ray diffraction. The thermal, non-flammability, and thermomechanical properties of the samples were examined by thermogravimetric analysis, limiting oxygen index, and dynamic mechanical analysis techniques. Light transmittance of the samples was determined by UV–Vis spectrophotometry, and their morphological structure was determined by scanning electron microscopy. In addition, gel contents, swelling rates, hardness, adhesion, contact angles, and resistance to chemicals and solvents of the samples were examined. In conclusion, nanohybrid materials obtained from the synthesized UA resin and improved with POSSV additive can be used in the coating industry. Note de contenu : - EXPERIMENTAL : Materials - Synthesis of epoxy-based urethane acrylate resin - Preparation of UV curable nanohybrid coating materials - Characterization
- RESULTS AND DISCUSSION : Structures characterization of UA resin - Double bonds conversion of UA resin and nanohybrid materials - XRD analysis of UA resin and nanohybrid materials - Thermal properties of UA resin and nanohybrid materials - Optical properties of UA resin and nanohybrid materials - Physical characterization of UA resin and nanohybrid materials - Chemical and solvent resistance of UA resin and nanohybrid materials - Morphologies of UA resin and nanohybrid materials
- Table 1 : Formulations of nanohybrid coatings materials
- Table 2 : Thermal properties of UA resin and nanohybrid materials
- Table 3 : Transmittance of UA resin and nanohybrid materials
- Table 4 : Physical characterization of UA resin and nanohybrid materials
- Table 5 : Chemical resistance of UA resin and nanohybrid materials
- Table 6 : Solvent resistance of UA resin and nanohybrid materialsDOI : https://doi.org/10.1007/s11998-023-00839-7 En ligne : https://drive.google.com/file/d/1_6e47gmTESBx1ckg4qXRI-gdNPTg3Iuw/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=40778
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 21, N° 2 (03/2024) . - p. 575-587[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 24736 - Périodique Bibliothèque principale Documentaires Disponible
[article]
Titre : PUGreen : a new bio-resin concept for composites processing Type de document : texte imprimé Auteurs : Gilmar Lima, Auteur ; Giuseppe Santanché, Auteur Année de publication : 2022 Article en page(s) : p. 46-49 Langues : Anglais (eng) Catégories : Biopolymères
Polymères -- Propriétés chimiques
Polymères -- Propriétés mécaniques
Polymères -- Propriétés physiques
Polyuréthanes
StratifiésIndex. décimale : 668.4 Plastiques, vinyles Résumé : Purcom Quimica (Brazil), G12 Innovation (Brazil) and Composite Integrity - the composites branch of the Institut de Soudure Group (France) have developped a vegetable polyurethane (PU) resin compatible with many processes and applications. It offers a great value thanks to a low CAPEX to use it and exceptional features. Note de contenu : - Challenges and opportunities
- Features, advantages and performance : Main features of PUGreen resin - Main advantages in composite laminate processing
- Main projects and applications : Construction industry - Transport
- Table 1 : Typical mechanical properties
- Table 2 : Physical-chemical properties and typical reaction characteristicsEn ligne : https://drive.google.com/file/d/10j9iZIjjMk56qDkgBwE5SkyZ--J-pnu4/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=38587
in JEC COMPOSITES MAGAZINE > N° 146 (06-07/2022) . - p. 46-49[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23696 - Périodique Bibliothèque principale Documentaires Disponible Role of hyper branched polymers in coatings / Machindra Shinde in PAINTINDIA, Vol. LXIX, N° 12 (12/2019)
[article]
Titre : Role of hyper branched polymers in coatings Type de document : texte imprimé Auteurs : Machindra Shinde, Auteur Année de publication : 2019 Article en page(s) : p. 61-70 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Polymères -- Propriétés chimiques
Polymères dendritiques
Polymères ramifiésIndex. décimale : 667.9 Revêtements et enduits Résumé : The hyperbranched polymers are more attractive because of their polydispersity and have less perfect globular shape. Unlike conventional polymers, the high number of end groups and their nature participate actively in the physical properties (solubility, glass transition temperature and viscosity) in combination with the backbone structure. This characteristic is exceptional since it leads to the possibility of dseigning the macromolecule with the combination of many different end groups, thus defining the type of reactive chemistry, properties and applications.
Hyperbranched polymers also have received much attention due to their unique chemical properties as well as their potential applications in coatings, additives, drug and gene delivery, macromolecular building blocks, nanotechnology, and supramolecular science. Hyperbranched polymers can be prepared by means of single monomer methodology (SMM) and double-monomer methodology (DMM). Too many factors have to be considered such as nature of end groups, branching density, flexibility of the repeating units, and in addition, the broad molar mass distribution can obscure specific effects.
Hyperbranched and dendritic polymers show low viscosities at high molecular weights. For coating applications, this should be highly interesting in terms of the environmental issues, where legislation plays an important role in the future trend towards coatings with lower VOCs than presently applicable. However, favourable viscosity is not the only property to which hyper branched polymers can contribute.Note de contenu : - HISTORY OF HYPERBRANCHED POLYMERS
- synthesis and properties of hyperbranched polymer : Structure - Dendritic growth - Divergent approach - Mixed reactivity approach - Convergent approach - Perstorp technology - Polymer composition
- STRUCTURE/PROPERTY RELATIONS : Physical properties - Reactivities - Chemical resistance - Thermal properties - mechanical properties - Molecular design
- APPLICATIONS : High-solid alkyds - Hyperbranched epoxies - Polyurethane dispersions - Hyperbranched acrylates
- FUTURE OF HYPERBRANCHED POLYMERS
- Fig. 1 : A schematic descriptionof dendritic polymer
- Fig. 2 : Dendritic molecule
- Fig. 3 : Dendritic growth according to the divergent approach
- Fig. 4 : Dendritic growth through mixed reactivity
- Fig. 5 : Dendritic growth through the convergent approach
- Fig. 6 : Perstorp technology
- Fig. 7 : Schematic illustration of hyperbranched growth
- Fig. 8 : Molecular design of a hyperbranched polymer
- Fig. 9 : Schematic illustration of hyperbranched PUR dispersion
- Graph 1 : Viscosity vs. molecular weight of hyperbranched polyester
- Graph 2 : TGA measurement of a hyperbranched polyester based on a 3-functional core and Bis-MPA
- Graph 3 : Air drying of high-solid alkyds
- Graph 4 : Toughening of epoxies by hyperbranched epoxies
- Graph 5 : Curing behavious of hyperbranched PUR-HMMM clear coat @ 160°C
- Graph 6 : UV curing of neat hyperbranched acrylates
- Table 1 : Properties of cured PUR dispersion at different cross-linking densities
- Table 2 : Properties of UV-cured hyperbranched acrylatesEn ligne : https://drive.google.com/file/d/1S34dhZ9slxryYLsTJRPChSSVn8QH8Imu/view?usp=share [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=33642
in PAINTINDIA > Vol. LXIX, N° 12 (12/2019) . - p. 61-70[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 21461 - Périodique Bibliothèque principale Documentaires Disponible Solutions with recycled PET HMLS for automotive applications / Thomas Buss in MAN-MADE FIBERS INTERNATIONAL, Vol. 73, N° 2 (2023)
Permalink