Accueil
Catégories
> QSAR (biochimie)
Une relation quantitative structure à activité (en anglais : Quantitative structure-activity relationship ou QSAR, parfois désignée sous le nom de relation quantitative structure à propriété - en anglais : quantitative structure-property relationship ou QSPR) est le procédé par lequel une structure chimique est corrélée avec un effet bien déterminé comme l'activité biologique ou la réactivité chimique.
Ainsi, l'activité biologique peut être exprimée de manière quantitative, comme pour la concentration de substance nécessaire pour obtenir une certaine réponse biologique. De plus lorsque les propriétés ou structures physiochimiques sont exprimées par des chiffres, on peut proposer une relation mathématique, ou relation quantitative structure à activité, entre les deux. L'expression mathématique obtenue peut alors être utilisée comme moyen prédictif de la réponse biologique pour des structures similaires. La QSAR la plus commune est de la forme : activité = f(propriétés physico-chimiques et/ou structurales). QSAR (biochimie)
Commentaire :
Une relation quantitative structure à activité (en anglais : Quantitative structure-activity relationship ou QSAR, parfois désignée sous le nom de relation quantitative structure à propriété - en anglais : quantitative structure-property relationship ou QSPR) est le procédé par lequel une structure chimique est corrélée avec un effet bien déterminé comme l'activité biologique ou la réactivité chimique.
Ainsi, l'activité biologique peut être exprimée de manière quantitative, comme pour la concentration de substance nécessaire pour obtenir une certaine réponse biologique. De plus lorsque les propriétés ou structures physiochimiques sont exprimées par des chiffres, on peut proposer une relation mathématique, ou relation quantitative structure à activité, entre les deux. L'expression mathématique obtenue peut alors être utilisée comme moyen prédictif de la réponse biologique pour des structures similaires. La QSAR la plus commune est de la forme : activité = f(propriétés physico-chimiques et/ou structurales). Voir aussi |
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
Review of quantitative structure-activity/property relationship studies of dyes : recent advances and perspectives / Feng Luan in COLORATION TECHNOLOGY, Vol. 129, N° 3 (06/2013)
[article]
Titre : Review of quantitative structure-activity/property relationship studies of dyes : recent advances and perspectives Type de document : texte imprimé Auteurs : Feng Luan, Auteur ; Xuan Xu, Auteur ; Huitao Liu, Auteur ; Maria Natà lia Dias Soeiro Cordeiro, Auteur Année de publication : 2013 Article en page(s) : p. 173-186 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Analyse qualitative (chimie)
Colorants
QSAR (biochimie)Une relation quantitative structure à activité (en anglais : Quantitative structure-activity relationship ou QSAR, parfois désignée sous le nom de relation quantitative structure à propriété - en anglais : quantitative structure-property relationship ou QSPR) est le procédé par lequel une structure chimique est corrélée avec un effet bien déterminé comme l'activité biologique ou la réactivité chimique.
Ainsi, l'activité biologique peut être exprimée de manière quantitative, comme pour la concentration de substance nécessaire pour obtenir une certaine réponse biologique. De plus lorsque les propriétés ou structures physiochimiques sont exprimées par des chiffres, on peut proposer une relation mathématique, ou relation quantitative structure à activité, entre les deux. L'expression mathématique obtenue peut alors être utilisée comme moyen prédictif de la réponse biologique pour des structures similaires.
La QSAR la plus commune est de la forme : activité = f(propriétés physico-chimiques et/ou structurales).Index. décimale : 667.3 Teinture et impression des tissus Résumé : Dyes have been applied and are playing an increasingly important role in many industries, including the textile, printing, medical and energy industries. Their wide applications imply that specific dyes possessing given properties need to be effectively designed. The present review aims to survey information related to activity/property research of dyes that has been published in the past two decades. Emphasis is laid particularly on studies based on quantitative structure–activity/property relationships that have contributed to the theoretical design and application of dyes. Finally, the perspectives of quantitative structure-activity/property relationship studies are set out in order to show how this method may be used to design new dyes and to evaluate their different properties. The challenges facing these studies are also outlined. Note de contenu : - QUANTITATIVE STRUCTURE-ACTIVITY/PROPERTY RELATIONSHIP STUDIES OF DYES : Quantitative structure-activity relationship approaches for affinity - QSAR approaches for fastness - Quantitative structure-property relationship approaches for the absorption maximum - Quantitative structure-activity relationship approaches for solubility - Quantitative structure-activity relationship approaches for mutagenicity - Other quantitative structure-activity/property relationship approaches
- CHALLENGES OF QUANTITATIVE STRUCTURE-ACTIVITY/PROPERTY RELATIONSHIP STUDIES : General challenges
- TWO-DIMENSIONAL QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS
- THREE-DIMENSIONAL QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS
- GENERAL GUIDELINES FOR QUANTITATIVE STRUCTURE-ACTIVITY/PROPERTY RELATIONSHIP DYE DESIGNDOI : 10.1111/cote.12027 En ligne : http://onlinelibrary.wiley.com/doi/10.1111/cote.12027/pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=18491
in COLORATION TECHNOLOGY > Vol. 129, N° 3 (06/2013) . - p. 173-186[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 15075 - Périodique Bibliothèque principale Documentaires Disponible Where do dyes go inside living cells ? Predicting uptake, intracellular localisation, and accumulation using QSAR models / Richard W. Horobin in COLORATION TECHNOLOGY, Vol. 130, N° 3 (06/2014)
[article]
Titre : Where do dyes go inside living cells ? Predicting uptake, intracellular localisation, and accumulation using QSAR models Type de document : texte imprimé Auteurs : Richard W. Horobin, Auteur Année de publication : 2014 Article en page(s) : p. 155-173 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Analyse quantitative (chimie)
Colorants -- Absorption
Colorants -- Toxicologie
QSAR (biochimie)Une relation quantitative structure à activité (en anglais : Quantitative structure-activity relationship ou QSAR, parfois désignée sous le nom de relation quantitative structure à propriété - en anglais : quantitative structure-property relationship ou QSPR) est le procédé par lequel une structure chimique est corrélée avec un effet bien déterminé comme l'activité biologique ou la réactivité chimique.
Ainsi, l'activité biologique peut être exprimée de manière quantitative, comme pour la concentration de substance nécessaire pour obtenir une certaine réponse biologique. De plus lorsque les propriétés ou structures physiochimiques sont exprimées par des chiffres, on peut proposer une relation mathématique, ou relation quantitative structure à activité, entre les deux. L'expression mathématique obtenue peut alors être utilisée comme moyen prédictif de la réponse biologique pour des structures similaires.
La QSAR la plus commune est de la forme : activité = f(propriétés physico-chimiques et/ou structurales).
Toxicologie cellulaireIndex. décimale : 667.3 Teinture et impression des tissus Résumé : Uptake of dyes into living cells and organisms is of concern to several diverse groups of people. These include those not wishing dyes to enter cells (e.g. manufacturers and users of textile dyes, or laboratory workers using dyes as analytical reagents) and those requiring dye entry (e.g. biologists imaging cell contents, or clinicians using photoactive dyes as antitumour drugs). This diversity results in the need to consider an extremely wide range of dyes – and indeed of cells and organisms. An overview of methods for predicting uptake and intracellular localisation is provided, followed by a more detailed account of the concepts and procedures involved in decision?rule quantitative structure–activity relationship (QSAR) models. Some of these models permit the prediction of which dyes are likely to enter cells, and which dyes will be excluded. Other models predict where internalised dyes will localise within the live cells. Use of QSAR models to understand intracellular accumulation, redistribution, loss from the cell, and metabolic modification of dyes is also considered. In particular, the relationship of such predictions to toxicity is discussed. An extended case example is provided, describing the modelling of dye binding to nucleic acids in single?cell systems. A further case example then illustrates dye localisation in multicellular organisms. Finally, conclusions, critiques, and probable future directions concerning the QSAR modelling approach to dye uptake and localisation are given. A summary of key QSAR decision rules in the form of decision logic tabulations is provided. Note de contenu : - WHO NEEDS TO KNOW - AND DOES IT MATTER - WHERE DYES GO ?
- WHICH TYPES OF DYE ARE CONSIDERED HERE ?
- WHICH CELLS (AND ORGANISMS) ARE OF CONCERN ? AND IN WHAT CONTEXT ?
- METHODS OF PREDICTING UPTAKE AND LOCALISATION, A BRIEF INTRODUCTION
- PREDICTIVE DECISION-RULE QSAR MODELS : CONCEPTS AND PROCEDURES
- WHICH DYES ENTER CELLS, AND WHICH DO NOT ? PREDICTING THE DIFFERENCES
- WHERE DYES GO INSIDE LIVE CELLS ? PREDICTING LOCALISATION : What are the start points - Possibility 1 : no further dye redistribution - Possibility 2 : dye redistribution occurs - Endoplasmic reticular membranes - Generic biomembranes - Golgi apparatus membranes - Lipid droplets - Lysosomes/acidic organelles - Mitochondria - Nuclear chromatin - Nucleolar and cytoplasmic ribosomal dsRNA - Phagosome - Localisation in organelles, some complications
- WHAT HAPPENS NEXT ? THE VARIED FATES OF DYES WITHIN CELLS : Accumulation - Redistribution, following damage to cells - Loss of dye from cells - Metabolism of dyes
- HOW DOES ALL THIS RELATE TO TOXICITY ?
- CASE EXAMPLE 1 - PREDICTING DYE ACCUMULATION IN NUCLEIC ACID-RICH SITES WITHIN SINGLE-CELL EUKARYOTIC SYSTEMS
- CASE EXAMPLE 2 - PREDICTING DYE LOCALISATION IN MULTICELLULAR ORGANISMS
- CONCLUSIONS, CRITIQUES, AND FUTURE DIRECTIONSDOI : 10.1111/cote.12093 En ligne : https://onlinelibrary.wiley.com/doi/epdf/10.1111/cote.12093 Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=21443
in COLORATION TECHNOLOGY > Vol. 130, N° 3 (06/2014) . - p. 155-173[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 16271 - Périodique Bibliothèque principale Documentaires Disponible