Accueil
Catégories
> Coacervation
La coacervation est un phénomène colloïdal qui implique la diminution de solubilté d'un polymère dans un solvant par addition de quantité importante de différents composés : un alcool, un deuxième polymère plus soluble ou un sel (sulfate de sodium). Les molécules de polymère qui sont désolvatées coalescent et forment des gouttelettes, dites gouttelettes de coacervat.
Si la coacervation se fait dans un milieu ou il y a deux phases, les gouttelettes de coacervat se regroupent à l'interface créant ainsi une membrane. Il suffit alors de durcir la membrane, de la rendre plus résistante par des réactions de crosslinking entre les molécules de polymère. Coacervation simple : La coacervation est déclenchée par addition d'un alcool concantré, par exemple de l'éthanol à 50% ou du sulfate de sodium Coacervation complexe : La coacervation complexe repose sur le même principe que la coacervation simple excepté que : le polymère en solution dans la phase continue est un polymère chargé, un deuxième polymère est utilisé pour modifier le solubilité du premier. Ce deuxième polymère porte une charge opposée à celle du premier. Coacervation
Commentaire :
La coacervation est un phénomène colloïdal qui implique la diminution de solubilté d'un polymère dans un solvant par addition de quantité importante de différents composés : un alcool, un deuxième polymère plus soluble ou un sel (sulfate de sodium). Les molécules de polymère qui sont désolvatées coalescent et forment des gouttelettes, dites gouttelettes de coacervat.
Si la coacervation se fait dans un milieu ou il y a deux phases, les gouttelettes de coacervat se regroupent à l'interface créant ainsi une membrane. Il suffit alors de durcir la membrane, de la rendre plus résistante par des réactions de crosslinking entre les molécules de polymère. Coacervation simple : La coacervation est déclenchée par addition d'un alcool concantré, par exemple de l'éthanol à 50% ou du sulfate de sodium Coacervation complexe : La coacervation complexe repose sur le même principe que la coacervation simple excepté que : le polymère en solution dans la phase continue est un polymère chargé, un deuxième polymère est utilisé pour modifier le solubilité du premier. Ce deuxième polymère porte une charge opposée à celle du premier. |
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
Alternative methods for transferring mosquito repellent capsules containing bio-based citronella oil to upholstery fabrics: coating and printing / Merih Sariisik in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 19, N° 1 (01/2022)
[article]
Titre : Alternative methods for transferring mosquito repellent capsules containing bio-based citronella oil to upholstery fabrics: coating and printing Type de document : texte imprimé Auteurs : Merih Sariisik, Auteur ; Gülsah Ekin kartal, Auteur ; Gökhan Erkan, Auteur ; Sadi Etkeser, Auteur Année de publication : 2022 Article en page(s) : p. 323–336 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Ameublement
Citronnelle
CoacervationLa coacervation est un phénomène colloïdal qui implique la diminution de solubilté d'un polymère dans un solvant par addition de quantité importante de différents composés : un alcool, un deuxième polymère plus soluble ou un sel (sulfate de sodium). Les molécules de polymère qui sont désolvatées coalescent et forment des gouttelettes, dites gouttelettes de coacervat.
Si la coacervation se fait dans un milieu ou il y a deux phases, les gouttelettes de coacervat se regroupent à l'interface créant ainsi une membrane. Il suffit alors de durcir la membrane, de la rendre plus résistante par des réactions de crosslinking entre les molécules de polymère.
Coacervation simple : La coacervation est déclenchée par addition d'un alcool concantré, par exemple de l'éthanol à 50% ou du sulfate de sodium
Coacervation complexe : La coacervation complexe repose sur le même principe que la coacervation simple excepté que : le polymère en solution dans la phase continue est un polymère chargé, un deuxième polymère est utilisé pour modifier le solubilité du premier. Ce deuxième polymère porte une charge opposée à celle du premier.
Encapsulation
Enduction textile
Ethylcellulose
Insecticides
Matériaux -- Imprégnation
Microcapsules
Morphologie (matériaux)
Moustiques
Textiles et tissusIndex. décimale : 667.9 Revêtements et enduits Résumé : The aim of this study was to prepare insect repellent textiles and compare the application methods. Bio-based insect repellent agent citronella oil was encapsulated with ethyl cellulose shell with coacervation method. Morphological assessment showed that capsules had smooth surfaces and their shape was spherical. The homogenous size distribution of the capsules was supported and the mean particle size of the optimum formulations was almost 50 μm. Outdoor upholstery fabrics were treated with citronella capsules by coating and printing to compare the application methods. After application, the insecticide effects of the fabrics were investigated and compared with the impregnation method. Insecticide activity was evaluated against common house mosquitoes (Culex pipiens), with respect to cone bioassay of World Health Organization. Mosquitoes tended to stay away from treated fabrics, and mortality rates of mosquitos were noted as 72, 65 and 55% for printing, coating and impregnation, respectively, and the fabrics still showed repellency after five washing cycles. This study showed that the developed product might be used as an alternative to the other products in the market for avoiding mosquito-borne diseases and these results showed that capsules can be transferred by printing and coating processes when compared with the impregnation method. Note de contenu : - EXPERIMENTAL : Materials - Preparation of the microcapsules - Mass yield of microcapsule - Particle morphology of microcapsules - Particle size of microcapsules - Fourier transform infrared spectrophotometer (FTIR) analysis - Thermogravimetric analysis (TGA) - Application of the microcapsules to the outdoor upholstery fabrics - Evaluation of treated fabrics
- RESULTS AND DISCUSSION : Mass yield of microcapsules - Particle morphology of microcapsules - Particle size of microcapsules - Fourier transform infrared spectrophotometer (FTIR) analysis - Thermogravimetric analysis (TGA) - Evaluation of treated fabrics
- Table 1 : Capsule transfer prescription for printing method
- Table 2 : Capsule transfer prescription for coating method
- Table 3 : Capsule transfer prescription for impregnation method
- Table 4 : Mass yield of microcapsules
- Table 5 : SEM photomicrographs of outdoor upholstery fabrics treated with citronella capsules with no wash, after 5 washing cycles and after rubbing
- Table 6 : The ion chromatogram of citronella oil and GC-MS diagrams of outdoor upholstery fabrics treated with citronella capsules with no wash and after 5 washing cycles
- Table 7 : Citronella amount in the samples as a result of GC-MS analysis
- Table 8 : m2 weight changes of samples before and after washing
- Table 9 : Insect repellent effect results of samples
- Table 10 : Dimensional change percentage for fabrics
- Table 11 : Fastness test results of capsule-transferred fabrics containing citronella
- Table 12 : Color measurements of fabricsDOI : https://doi.org/10.1007/s11998-021-00529-2 En ligne : https://link.springer.com/content/pdf/10.1007/s11998-021-00529-2.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=37161
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 19, N° 1 (01/2022) . - p. 323–336[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23313 - Périodique Bibliothèque principale Documentaires Disponible Evaluation of the type of polymer and co-surfactant in coacervate formation / Wilson Cabrejos Caracciolo in SOFW JOURNAL, Vol. 149, N° 5 (05/2023)
[article]
Titre : Evaluation of the type of polymer and co-surfactant in coacervate formation Type de document : texte imprimé Auteurs : Wilson Cabrejos Caracciolo, Auteur Année de publication : 2023 Article en page(s) : p. 16-20 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Cheveux -- Soins et hygiène
CoacervationLa coacervation est un phénomène colloïdal qui implique la diminution de solubilté d'un polymère dans un solvant par addition de quantité importante de différents composés : un alcool, un deuxième polymère plus soluble ou un sel (sulfate de sodium). Les molécules de polymère qui sont désolvatées coalescent et forment des gouttelettes, dites gouttelettes de coacervat.
Si la coacervation se fait dans un milieu ou il y a deux phases, les gouttelettes de coacervat se regroupent à l'interface créant ainsi une membrane. Il suffit alors de durcir la membrane, de la rendre plus résistante par des réactions de crosslinking entre les molécules de polymère.
Coacervation simple : La coacervation est déclenchée par addition d'un alcool concantré, par exemple de l'éthanol à 50% ou du sulfate de sodium
Coacervation complexe : La coacervation complexe repose sur le même principe que la coacervation simple excepté que : le polymère en solution dans la phase continue est un polymère chargé, un deuxième polymère est utilisé pour modifier le solubilité du premier. Ce deuxième polymère porte une charge opposée à celle du premier.
Conditionneurs (cosmétique)
Ingrédients cosmétiques
Polymères
Polymères cationiques
Précipitation (chimie)
shampooings
SurfactantsIndex. décimale : 668.5 Parfums et cosmétiques Résumé : Coacervates are complexes formed from a polymer-polymer or polymer-surfactant interaction. Coacervates formed by a cationic polymer and an anionic surfactant enabled the development of the first conditioning shampoos (also called 2-in-1 shampoos). The objective of this work is to contribute with the identification of formulation parameters that increase the formation of coacervates. Polymer charge, micelles charges and the total content of surfactants are determining factors in the formation of coacervates. Factors such as polymer molecular weight and ionic strength also contribute, although in lesser order of importance, to the formation of coacervates. However, the role played by the degree of hydrophilicity/hydrophobicity of the polymer, as well as the effect of different co-surfactants, has not been determined with certainty. In the present study, three different types of polymers and six types of co-surfactants will be evaluated, keeping constant the amount of anionic surfactant, total content of surfactants and ionic strength. These results will serve to optimize the formulation of conditioning hair cleaning products. Note de contenu : - OBJECTIVES
- MATERIALS & METHODS : Precipitation studies : effect of the co-surfactant - Preciiptation studies : effect of the polymer
- RESULTS AND DISCUSSION : Precipitation studies : effect of the co-surfactant - Precipitation studies : effect of the polymer
- Table 1 : Precipitation test with different types of co-surfactants, at a dilution rate of 1:3 of test solution/waterEn ligne : https://drive.google.com/file/d/1Oj70TaH7QOZTXdmsiJkkoFuukQkcFeOm/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=39455
in SOFW JOURNAL > Vol. 149, N° 5 (05/2023) . - p. 16-20[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23973 - Périodique Bibliothèque principale Documentaires Disponible Piégeage des arômes : les techniques de pointes / Ph. M. in PARFUMS COSMETIQUES AROMES, N° 115 (02-03/94)
[article]
Titre : Piégeage des arômes : les techniques de pointes Type de document : texte imprimé Auteurs : Ph. M., Auteur Année de publication : 1994 Article en page(s) : p. 103-106 Langues : Français (fre) Catégories : Aromatisants
CoacervationLa coacervation est un phénomène colloïdal qui implique la diminution de solubilté d'un polymère dans un solvant par addition de quantité importante de différents composés : un alcool, un deuxième polymère plus soluble ou un sel (sulfate de sodium). Les molécules de polymère qui sont désolvatées coalescent et forment des gouttelettes, dites gouttelettes de coacervat.
Si la coacervation se fait dans un milieu ou il y a deux phases, les gouttelettes de coacervat se regroupent à l'interface créant ainsi une membrane. Il suffit alors de durcir la membrane, de la rendre plus résistante par des réactions de crosslinking entre les molécules de polymère.
Coacervation simple : La coacervation est déclenchée par addition d'un alcool concantré, par exemple de l'éthanol à 50% ou du sulfate de sodium
Coacervation complexe : La coacervation complexe repose sur le même principe que la coacervation simple excepté que : le polymère en solution dans la phase continue est un polymère chargé, un deuxième polymère est utilisé pour modifier le solubilité du premier. Ce deuxième polymère porte une charge opposée à celle du premier.
CyclodextrineUne cyclodextrine (dite parfois cycloamylose) est une molécule-cage ou cage moléculaire d’origine naturelle qui permet d’encapsuler diverses molécules. Les cyclodextrines se rencontrent aujourd'hui dans un grand nombre de produits agroalimentaires et pharmaceutiques et sont donc l’objet de nombreuses recherches scientifiques.
Une cyclodextrine est un oligomère (oligosaccharide) cyclique composé de n chaînons glucopyranose C6H10O5 liés en α-(1,4), d’où la formule brute (C6H10O5)n. Pour les cyclodextrines typiques les valeurs de n sont égales à 6, 7 ou 8. Mais d'autres cyclodextrines ont des valeurs de n plus élevées, de l'ordre de 10 à 30 ou même plus. Les plus grandes de ces molécules sont dites "cyclodextrines géantes", et perdent les propriétés de molécules-cages. Comme c'est le cas en langue anglaise3 il semble raisonnable de réserver le terme de cycloamyloses à ces cyclodextrines qui tendent à se rapprocher de l'amylose. Cet oligomère en chaîne ouverte possède un grand nombre n de chaînons C6H10O5. On note l'analogie de structure entre : d'une part les trois cyclodextrines typiques et l'amylose, et d'autre part les trois cycloalcanes (CH2)n avec n = 6, 7 ou 8 et le polyéthylène (CH2)n avec n très grand.
Trois familles sont principalement utilisées ou étudiées les α-, β- et γ-cyclodextrines formées respectivement de 6, 7 et 8 chaînons C6H10O.
Propriétés remarquables : Les cyclodextrines possèdent une structure en tronc de cône, délimitant une cavité en leur centre. Cette cavité présente un environnement carboné apolaire et plutôt hydrophobe (squelette carboné et oxygène en liaison éther), capable d'accueillir des molécules peu hydrosolubles, tandis que l'extérieur du tore présente de nombreux groupements hydroxyles, conduisant à une bonne solubilité (mais fortement variable selon les dérivés) des cyclodextrines en milieu aqueux. On remarquera que la β-CD naturelle est près de dix fois moins soluble que les α-CD et γ-CD naturelles: en effet, toutes les cyclodextrines présentent une ceinture de liaisons hydrogène à l'extérieur du tore. Il se trouve que cette "ceinture" est bien plus rigide chez la β-CD, ce qui explique la difficulté de cette molécule à former des liaisons hydrogène avec l'eau et donc sa plus faible solubilité en milieu aqueux. Grâce à cette cavité apolaire, les cyclodextrines sont capables de former des complexes d'inclusion en milieu aqueux avec une grande variété de molécules-invitées hydrophobes. Une ou plusieurs molécules peuvent être encapsulées dans une, deux ou trois cyclodextrines.
La formation de complexe suppose une bonne adéquation entre la taille de la molécule invitée et celle de la cyclodextrine (l'hôte). « Il se produit de manière non-covalente à l’intérieur de la cavité grâce, soit à des liaisons hydrogène, soit des interactions électroniques de Van der Waals »7. L'intérieur de la cavité apporte un micro-environnement lipophile dans lequel peuvent se placer des molécules non polaires. La principale force provoquant la formation de ces complexes est la stabilisation énergétique du système par le remplacement dans la cavité des molécules d'eau à haute enthalpie par des molécules hydrophobes qui créent des associations apolaires-apolaires. Ces molécules invitées sont en équilibre dynamique entre leur état libre et complexé. La résultante de cette complexation est la solubilisation de molécules hydrophobes très insolubles dans la phase aqueuse. Ainsi les cyclodextrines sont capables de complexer en milieu aqueux et ainsi de solubiliser les composés hydrophobes (la polarité de la cavité est comparable à celle d'une solution aqueuse d'éthanol). Les cyclodextrines sont de plus capables de créer des complexes de stœchiométries différentes selon le type de molécule invitée: plusieurs CD peuvent complexer la même molécule ou plusieurs molécules peuvent être complexées par la même CD. Il est d'usage de noter (i:j) la stœchiométrie du complexe, où j indique le nombre de CD impliquées et i le nombre de molécules complexées. Remarquez que les variations autour de ces stœchiométries sont très vastes, les complexes les plus courants étant les (1:1), (2:1) et (1:2), mais des complexes (3:4) ou encore (5:4) existent!
Cas particulier des dimères de cyclodextrines
Il a été publié récemment que certains dimères de cyclodextrines peuvent subir une étrange déformation dans l'eau. En effet, l'unité glucopyranose porteuse du groupement "linker" peut pivoter sur 360° permettant ainsi la formation d'un complexe d'inclusion entre la cyclodextrine et le groupement hydrophobe.
Les cyclodextrines sont utilisés dans de nombreux secteurs comme la médecine, la pharmacologie, l'agroalimentaire, la chimie analytique, la dépollution des sols, la métallurgie, la désodorisation, la cosmétique, le textile ainsi que comme catalyseur.
Encapsulation
Industries agro-alimentaires
Procédés de fabrication
Recherche industrielleIndex. décimale : 668.5 Parfums et cosmétiques Résumé : La micro-encapsulation est, aujourd'hui, utilisée industriellement. En alimentaire, la protection des substances volatiles et leur mise en Å“uvre plus facile étant des éléments importants, la coacervation ou l'encapsulation par cyclodextrines devraient devenir des techniques d'avenir pour l'industrie. Note de contenu : - LES LIMITES TECHNIQUES: Pour Sanofie Bio-industrie, Microlithe - Entre le stade du développement en laboratoire et l'échelle industrielle
- DE NOMBREUSES APPLICATIONS POTENTIELLES
- VASTES CHAMPS DE RECHERCHES DANS LES SUPPORTS: De part ses caractéristiques physicochimiques - Des avantages que comptent exploiter les cyclodextrinesPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=19563
in PARFUMS COSMETIQUES AROMES > N° 115 (02-03/94) . - p. 103-106[article]Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 002591 - Périodique Bibliothèque principale Documentaires Exclu du prêt
[article]
Titre : Power at its core : Using microencapsulation to produce smart coatings Type de document : texte imprimé Auteurs : Claus Jurisch, Auteur Année de publication : 2017 Article en page(s) : p. 130-134 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Anticorrosion
CoacervationLa coacervation est un phénomène colloïdal qui implique la diminution de solubilté d'un polymère dans un solvant par addition de quantité importante de différents composés : un alcool, un deuxième polymère plus soluble ou un sel (sulfate de sodium). Les molécules de polymère qui sont désolvatées coalescent et forment des gouttelettes, dites gouttelettes de coacervat.
Si la coacervation se fait dans un milieu ou il y a deux phases, les gouttelettes de coacervat se regroupent à l'interface créant ainsi une membrane. Il suffit alors de durcir la membrane, de la rendre plus résistante par des réactions de crosslinking entre les molécules de polymère.
Coacervation simple : La coacervation est déclenchée par addition d'un alcool concantré, par exemple de l'éthanol à 50% ou du sulfate de sodium
Coacervation complexe : La coacervation complexe repose sur le même principe que la coacervation simple excepté que : le polymère en solution dans la phase continue est un polymère chargé, un deuxième polymère est utilisé pour modifier le solubilité du premier. Ce deuxième polymère porte une charge opposée à celle du premier.
Core-Shell
Encapsulation
Matériaux intelligents
Polymérisation
Revêtement autoréparant:Peinture autoréparante
Revêtements -- Additifs:Peinture -- AdditifsIndex. décimale : 667.9 Revêtements et enduits Résumé : Core-shell microencapsulation technology offers a number of advantages for the paints and coatings industry. It helps over-come incompatibilities in coating systems and can be used with a variety of release mechanisms to suit different applications. Accelerating the development phase and understanding the key parameters will pave the way for future growth in this field. Note de contenu : - Microencapsulation state of the art
- Targeted release triggers
- Microcapsules in action
- Encapsulated biocides overcome incompatibilities
- Smart coatings for self-healing and corrosion protection
- Capsules release anti-corrosive coating to prolong service life
- Dual function - indication and inhibition
- Key microcapsule design criteria
- Potential for more complex applications
- FIGURES : 1. Developments of patents in 5-year intervals (source : databe CAPLUS 17.01.2017 ; key words, microcapsules in painrts, varnishes and coatings) - SEM core-shell capsule - 3. Schematic image of microencapsulation by in situ polymerisation or coacervation - 4. Particle size distribution - coulter particle sizer and light microscopic image - 5. Schematic illustration of self-healingEn ligne : https://drive.google.com/file/d/12dBLXfWEmCc5_MF_i2CiU2k0l8bfUQKW/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=28277
in EUROPEAN COATINGS JOURNAL (ECJ) > N° 4 (04/2017) . - p. 130-134[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 18809 - Périodique Bibliothèque principale Documentaires Disponible